ZXMP10A18K

100V DPAK P－channel enhancement mode MOSFET

Summary

$\mathbf{V}_{\text {（BR）DSS }}$	$\mathbf{R}_{\mathbf{D S}(\text { on）}}(\Omega)$	$\mathbf{I}_{\mathbf{D}}(\mathrm{A})$
-100	$0.150 @ \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	-5.9
	$0.190 @ \mathrm{~V}_{\mathrm{GS}}=-6 \mathrm{~V}$	-5.2

Description

This new generation trench MOSFET from Zetex features a unique structure combining the benefits of low on－resistance and fast switching，making it ideal for high efficiency power management applications．

Features

－Low on－resistance
－Fast switching speed
－Low threshold
－Low gate drive
－DPAK package

Applications

－DC－DC converters
－Power management functions
－Disconnect switches
－Motor control

Ordering information

Device	Reel size （inches）	Tape width $(\mathbf{m m})$	Quantity per reel
ZXMP10A18KTC	13	16	2,500

Device marking

ZXMP
10A18

ZXMP10A18K

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Drain-source voltage	$\mathrm{V}_{\text {DSS }}$	-100	V
Gate-source voltage	V_{GS}	± 20	V
Continuous drain current $@ V_{G S}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{\text {(b) }}$ @ $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}^{(b)}$ @ $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}(\mathrm{a})$	I_{D}	$\begin{aligned} & \hline-5.9 \\ & -4.7 \\ & -3.8 \end{aligned}$	A
Pulsed drain current ${ }^{(\mathrm{c})}$	I_{DM}	-21.1	A
Continuous source current (body diode) ${ }^{\text {(b) }}$	I_{S}	-10	A
Pulsed source current (body diode) ${ }^{(c)}$	$\mathrm{I}_{\text {SM }}$	-21.1	A
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (a) Linear derating factor	P_{D}	$\begin{gathered} \hline 4.3 \\ 34.4 \end{gathered}$	W $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (b) Linear derating factor	P_{D}	$\begin{aligned} & 10.2 \\ & 81.3 \end{aligned}$	W $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (d) Linear derating factor	$P_{\text {D }}$	$\begin{aligned} & 2.17 \\ & 17.4 \end{aligned}$	W $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating and storage temperature range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient ${ }^{(\mathrm{a})}$	$\mathrm{R}_{\text {ӨJA }}$	29	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{(\mathrm{b})}$	$\mathrm{R}_{\text {ӨJA }}$	12.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient ${ }^{(\mathrm{d})}$	$\mathrm{R}_{\text {ӨJA }}$	57.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

(a) For a device surface mounted on $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided 20 copper, in still air conditions.
(b) For a device surface mounted on FR4 PCB measured at $t \leq 10$ sec.
(c) Repetitive rating $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB, $\mathrm{D}=0.02$ pulse width $=300 \mu \mathrm{~s}$ - pulse width limited by maximum junction temperature.
(d) For a device surface mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided 1 oz copper, in still air conditions.

ZXMP10A18K

Thermal characteristics

Transient Thermal Impedance
Transient Thermal Impedance

Pulse Power Dissipation
Derating Curve

ZXMP10A18K

Electrical characteristics (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Static						
Drain-source breakdown voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {d }} \text { (}}$	-100			V	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Zero gate voltage drain current	$\mathrm{I}_{\text {DSS }}$			-1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Gate-body leakage	$\mathrm{I}_{\text {GSS }}$			100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
Gate-source threshold voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	-2.0		-4.0	V	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{G S}$
Static drain-source on-state resistance ${ }^{(*)}$	$\mathrm{R}_{\text {DS(on) }}$			$\begin{aligned} & 0.150 \\ & 0.190 \end{aligned}$	Ω	$\begin{aligned} & V_{G S}=-10 V, I_{D}=-2.8 \mathrm{~A} \\ & V_{G S}=-6 V, I_{D}=-2.4 \mathrm{~A} \end{aligned}$
Forward transconductance ${ }^{(*)(\ddagger)}$	g_{fs}		6.0		S	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.8 \mathrm{~A}$
Dynamic ${ }^{(\ddagger)}$ (3)						
Input capacitance	$\mathrm{C}_{\text {iss }}$		1055		pF	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
Output capacitance	Coss		90		pF	
Reverse transfer capacitance	$\mathrm{C}_{\text {rss }}$		76		pF	
Switching ${ }^{(\dagger)}{ }^{(\ddagger)}$						
Turn-on-delay time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$		4.9		ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=6.0 \Omega, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \end{aligned}$
Rise time	t_{r}		6.8		ns	
Turn-off delay time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$		33.9		ns	
Fall time	t_{f}		17.9		ns	
Total gate charge	Q_{g}		26.9		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-50 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=-2.8 \mathrm{~A} \end{aligned}$
Gate-source charge	O_{gs}		3.9		nC	
Gate drain charge	Q_{gd}		10.2		nC	
Source-drain diode						
Diode forward voltage ${ }^{(*)}$	$\mathrm{V}_{\text {SD }}$		-0.85	-0.95	V	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=-3.5 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$
Reverse recovery time ${ }^{(\ddagger)}$	t_{rr}		49		ns	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=-2.8 \mathrm{~A}, \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{ms} \end{aligned}$
Reverse recovery charge ${ }^{(\ddagger)}$	$\mathrm{O}_{\text {rr }}$		107		nC	

NOTES:

(*) Measured under pulsed conditions. Pulse width $\leq 300 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$
(\dagger) Switching characteristics are independent of operating junction temperature.
(\ddagger) For design aid only, not subject to production testing.

ZXMP10A18K

Typical characteristics

Typical Transfer Characteristics

On-Resistance v Drain Current

Normalised Curves v Temperature

[^0]
ZXMP10A18K

Typical characteristics

Capacitance v Drain-Source Voltage

Basic gate charge waveform

Switching time waveforms

Gate-Source Voltage v Gate Charge

Gate charge test circuit

Switching time test circuit

ZXMP10A18K

Intentionally left blank

ZXMP10A18K

Package outline - DPAK

SEE VIEW C

DIM	Inches		Millimeters		DIM	Inches		Millimeters	
	Min	Max	Min	Max		Min	Max	Min	Max
A	0.086	0.094	2.18	2.39	e	0.090 BSC		2.29 BSC	
A1	-	0.005	-	0.127	H	0.370	0.410	9.40	10.41
b	0.020	0.035	0.508	0.89	L	0.055	0.070	1.40	1.78
b2	0.030	0.045	0.762	1.14	L1	0.108 REF		2.74 REF	
b3	0.205	0.215	5.21	5.46	L2	0.020 BSC		0.508 BSC	
C	0.018	0.024	0.457	0.61	L3	0.035	0.065	0.89	1.65
c2	0.018	0.023	0.457	0.584	L4	0.025	0.040	0.635	1.016
D	0.213	0.245	5.41	6.22	L5	0.045	0.060	1.14	1.52
D1	0.205	-	5.21	-	O1 ${ }^{\circ}$	0°	10°	0°	10°
E	0.250	0.265	6.35	6.73	θ°	0°	15°	0°	15°
E1	0.170	-	4.32	-	-	-	-	-	-

Note: Controlling dimensions are in inches. Approximate dimensions are provided in millimeters

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton
D-81673 München	Haupauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone: (44) 161 622 4444
Fax: (49) 89 45 49 49 49 europe.sales@zetex.com	Fax: (1) 631 360 8222 usa.sales@zetex.com	Fax: (852) 24250 494 asia.sales@zetex.com	Fax: (44) 161622 4446 hq@zetex.com

For international sales offices visit www.zetex.com/offices
Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork
This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

[^0]: Source-Drain Diode Forward Voltage

