19-4110; Rev 0; 4/08

1μA, 4-Bump UCSP/SOT23, **Precision Current-Sense Amplifier**

General Description

The MAX9938 high-side current-sense amplifier offers precision accuracy specifications of Vos less than 500µV (max) and gain error less than 0.5% (max). Quiescent supply current is an ultra-low 1µA. The MAX9938 fits in a tiny, 1mm x 1mm UCSP™ package size or a 5-pin SOT23 package, making the part ideal for applications in notebook computers, cell phones, PDAs, and all battery-operated portable devices where accuracy, low quiescent current, and small size are critical.

The MAX9938 features an input common-mode voltage range from 1.6V to 28V. These current-sense amplifiers have a voltage output and are offered in three gain versions: 25V/V (MAX9938T), 50V/V (MAX9938F), and 100V/V (MAX9938H).

The three gain selections offer flexibility in the choice of the external current-sense resistor. The very low 500µV (max) input offset voltage allows small 25mV to 50mV full-scale Vsense voltage for very low voltage drop at full-current measurement.

The MAX9938 is offered in tiny 4-bump, UCSP (1mm x 1mm x 0.6mm footprint) and 5-pin SOT23 packages, specified for operation over the -40°C to +85°C extended temperature range.

Applications

Cell Phones

PDAs

MAXIM

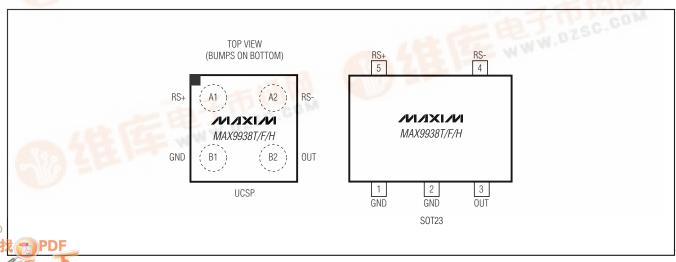
Power Management Systems Portable/Battery-Powered Systems

Notebook Computers

Features

- ♦ Ultra-Low Supply Current of 1µA (max)
- ♦ Low 500µV (max) Input Offset Voltage
- ◆ Low < 0.5% (max) Gain Error</p>
- ♦ Input Common Mode: +1.6V to +28V
- **♦ Voltage Output**
- ♦ Three Gain Versions Available 25V/V (MAX9938T) 50V/V (MAX9938F) 100V/V (MAX9938H)
- ♦ Tiny 1mm x 1mm x 0.6mm, 4-Bump UCSP or 5-Pin SOT23 Package

Ordering Information


PART	PIN- PACKAGE	GAIN (V/V)	TOP MARK
MAX9938TEBS+	4 UCSP	25	+AGD
MAX9938FEBS+	4 UCSP	50	+AGE
MAX9938HEBS+	4 UCSP	100	+AGF
MAX9938TEUK+	5 SOT23	25	+AFFB
MAX9938FEUK+	5 SOT23	50	+AFFC
MAX9938HEUK+	5 SOT23	100	+AFFD

⁺Denotes a lead-free package.

Note: All devices are specified over the -40°C to +85°C extended temperature range.

UCSP is a trademark of Maxim Integrated Products, Inc.

Pin Configurations

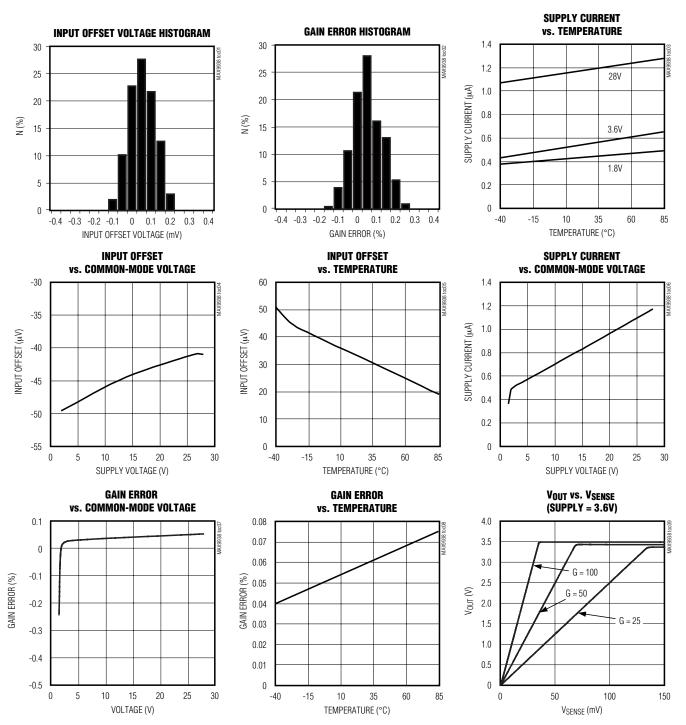
ABSOLUTE MAXIMUM RATINGS

RS+, RS- to GND	-0.3V to +30V
OUT to GND	0.3V to +6V
RS+ to RS-	±30V
Short-Circuit Duration: OUT to GND	Continuous
Continuous Input Current (Any Pin)	±20mA
Continuous Power Dissipation (T _A = +70°C)	
4-Bump UCSP (derate 3.0mW/°C above +70°C)238mW
5-Pin SOT23 (derate 3.9mW/°C above +70°C)	312mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Bump Temperature (soldering) Reflow	+235°C
Lead Temperature (soldering, 10s)	+300°C

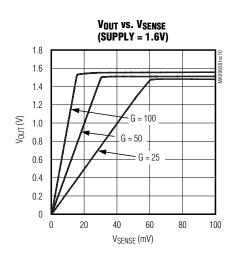
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

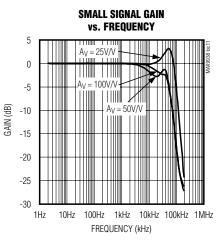
ELECTRICAL CHARACTERISTICS

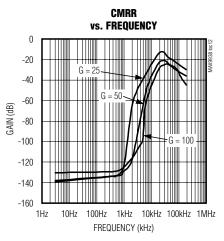

(VRS+ = VRS- = 3.6V, VSENSE = (VRS+ - VRS-) = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

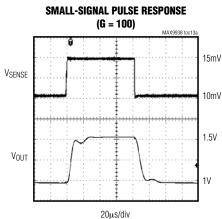
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		$V_{RS+} = 5V, T_A = +25^{\circ}C$		0.5	0.85		
Supply Current (Note 2)	Icc	V _{RS+} = 5V, -40°C < T _A < +85°C			1.1		
		$V_{RS+} = 28V, T_A = +25^{\circ}C$		1.1	1.8	μΑ	
		$V_{RS+} = 28V, -40^{\circ}C < T_{A} < +85^{\circ}C$			2.5		
Common-Mode Input Range	V _{CM}	Guaranteed by CMRR , -40°C < T _A < +85°C	1.6		28	V	
Common-Mode Rejection Ratio	CMRR	1.6V < V _{RS+} < 28V, -40°C < T _A < +85°C	94	130		dB	
Input Offset Voltage (Note 2)	\/00	$T_A = +25$ °C		±100	±500	/	
Input Offset Voltage (Note 3)	Vos	-40°C < T _A < +85°C			±600	μV	
		MAX9938T		25		V/V	
Gain	G	MAX9938F		50			
		MAX9938H		100			
Opin Farra (Nichold)	GE	$T_A = +25$ °C		±0.1	±0.5	%	
Gain Error (Note 4)		-40°C < T _A < +85°C			±0.6		
Output Resistance	Rout	(Note 5)	7.0	10	13.2	kΩ	
	V _{OL}	Gain = 25		1.5	15	mV	
OUT Low Voltage		Gain = 50		3	30		
		Gain = 100		6	60		
OUT High Voltage	VoH	V _{OH} = V _{RS-} - V _{OUT} (Note 6)		0.1	0.2	V	
	BW	VSENSE = 50mV, gain = 25		125			
Small-Signal Bandwidth (Note 5)		V _{SENSE} = 50mV, gain = 50		60		kHz	
(14010-3)		VSENSE = 50mV, gain = 100		30			
Output Settling Time	ts	1% final value, V _{SENSE} = 50mV		100		μs	
Power-Up Time	ton	1% final value, V _{SENSE} = 50mV		200		μs	

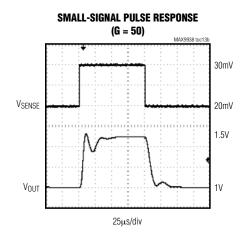
- Note 1: All devices are 100% production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.
- Note 2: Vout = 0. Icc is the total current into RS+ plus RS- pins.
- Note 3: VOS is extrapolated from measurements for the gain-error test.
- Note 4: Gain error is calculated by applying two values of VSENSE and calculating the error of the slope vs. the ideal:
 - Gain = 25, VSENSE is 20mV and 120mV.
 - Gain = 50, V_{SENSE} is 10mV and 60mV.
 - Gain = 100, V_{SENSE} is 5mV and 30mV.
- Note 5: The device is stable for any external capacitance value.
- **Note 6:** V_{OH} is the voltage from V_{RS} to V_{OUT} with $V_{SENSE} = 3.6V/gain$.

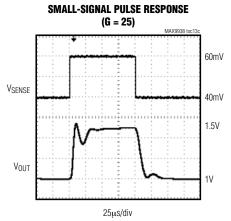

Typical Operating Characteristics

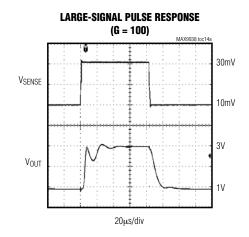

 $(V_{RS+} = V_{RS-} = 3.6V, T_A = +25^{\circ}C, unless otherwise noted.)$

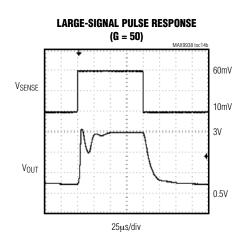


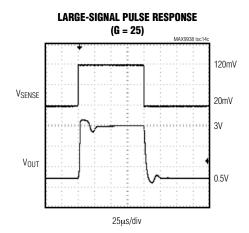

Typical Operating Characteristics (continued)


 $(V_{RS+} = V_{RS-} = 3.6V, T_A = +25^{\circ}C, unless otherwise noted.)$



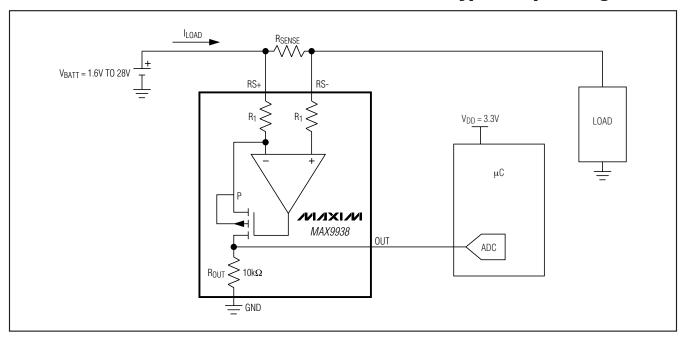






Typical Operating Characteristics (continued)

($V_{RS+} = V_{RS-} = 3.6V$, $T_A = +25$ °C, unless otherwise noted.)



Pin Description

Р	IN	NAME	FUNCTION	
UCSP	SOT23	NAME	FUNCTION	
A1	5	RS+	External Sense Resistor Power-Side Connection	
A2	4	RS- External Sense Resistor Load-Side Connection		
B1	1, 2	GND	Ground	
B2	3	OUT	Output Voltage. V _{OUT} is proportional to V _{SENSE} = V _{RS+} - V _{RS-} .	

Typical Operating Circuit

Detailed Description

The MAX9938 unidirectional high-side, current-sense amplifier features a 1.6V to 28V input common-mode range. This feature allows the monitoring of current out of a battery with a voltage as low as 1.6V. The MAX9938 monitors current through a current-sense resistor and amplifies the voltage across that resistor.

The MAX9938 is a unidirectional current-sense amplifier that has a well-established history. An op amp is used to force the current through an internal gain resistor at RS+, which has a value of R_1 , such that its voltage drop equals the voltage drop across an external sense resistor, RSENSE. There is an internal resistor at RS- with the

Table 1. Internal Gain Setting Resistors (Typical Values)

GAIN (V/V)	R ₁ (Ω)	R _{OUT} (kΩ)
100	100	10
50	200	10
25	400	10

same value as R_1 to minimize offset voltage. The current through R_1 is sourced by a high-voltage p-channel FET. Its source current is the same as its drain current, which flows through a second gain resistor, R_{OUT} . This produces an output voltage, V_{OUT} , whose magnitude is $I_{LOAD} \times R_{SENSE} \times R_{OUT}/R_1$. The gain accuracy is based on the matching of the two gain resistors R_1 and R_{OUT} (see Table 1). Total gain = 25V/V for the MAX9938T, 50V/V for the MAX9938F, and 100V/V for the MAX9938H. The output is protected from input overdrive by use of an output current limiting circuit of 7mA (typical) and a 6V clamp protection circuit.

_Applications Information

Choosing the Sense Resistor

Choose RSENSE based on the following criteria:

Voltage Loss

A high RSENSE value causes the power-source voltage to drop due to IR loss. For minimal voltage loss, use the lowest RSENSE value.

OUT Swing vs. VRS+ and VSENSE

The MAX9938 is unique since the supply voltage is the input common-mode voltage (the average voltage at RS+ and RS-). There is no separate V_{CC} supply voltage pin. Therefore, the OUT voltage swing is limited by the minimum voltage at RS+.

 V_{OUT} (max) = V_{RS+} (min) - V_{SENSE} (max) - V_{OH} and

$$R_{SENSE} = \frac{V_{OUT}(max)}{G \times I_{LOAD}(max)}$$

VSENSE full scale should be less than VOUT/gain at the minimum RS+ voltage. For best performance with a 3.6V supply voltage, select RSENSE to provide approximately 120mV (gain of 25V/V), 60mV (gain of 50V/V), or 30mV (gain of 100V/V) of sense voltage for the full-scale current in each application. These can be increased by use of a higher minimum input voltage.

Accuracy

In the linear region (Vout < Vout(max)), there are two components to accuracy: input offset voltage (Vos) and gain error (GE). For the MAX9938, Vos = $500\mu V$ (max) and gain error is 0.5% (max). Use the linear equation:

to calculate total error. A high RSENSE value allows lower currents to be measured more accurately because off-sets are less significant when the sense voltage is larger.

Efficiency and Power Dissipation

At high current levels, the I²R losses in R_{SENSE} can be significant. Take this into consideration when choosing the resistor value and its power dissipation (wattage) rating. Also, the sense resistor's value might drift if it is allowed to heat up excessively. The precision V_{OS} of the MAX9938 allows the use of small sense resistors to reduce power dissipation and reduce hot spots.

Kelvin Connections

Because of the high currents that flow through RSENSE, take care to eliminate parasitic trace resistance from causing errors in the sense voltage. Either use a four-terminal current-sense resistor or use Kelvin (force and sense) PCB layout techniques.

Optional Output Filter Capacitor

When designing a system that uses a sample-and-hold stage in the ADC, the sampling capacitor momentarily loads OUT and causes a drop in the output voltage. If sampling time is very short (less than a microsecond), consider using a ceramic capacitor across OUT and GND to hold VOUT constant during sampling. This also decreases the small-signal bandwidth of the current-sense amplifier and reduces noise at OUT.

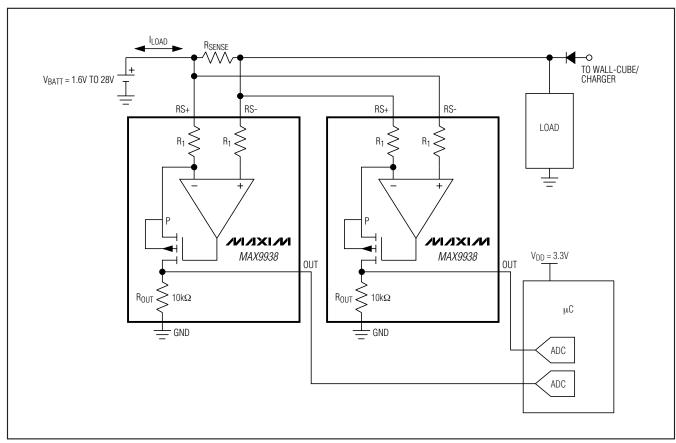


Figure 1. Bidirectional Application

Bidirectional Application

Battery-powered systems may require a precise bidirectional current-sense amplifier to accurately monitor the battery's charge and discharge currents. Measurements of the two separate outputs with respect to GND yields an accurate measure of the charge and discharge currents respectively (Figure 1).

UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note *UCSP—A Wafer-Level Chip-Scale Package* available on Maxim's website at www.maxim-ic.com/ucsp.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
2 x 2 UCSP	B4-1	<u>21-0117</u>
5 SOT23	U5-2	<u>21-0057</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.