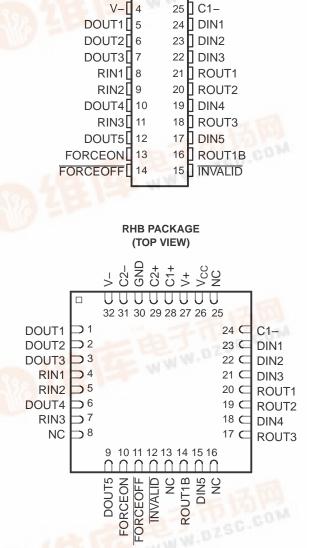
捷多邦,专业PCB打标SN65G3238E急SN75C3238E 询SN75C3238EDBR供应商 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS WITH ±15-kV ESD (HBM) PROTECTION

SLLS726-MAY 2006

FEATURES


INSTRUMENTS

www.ti.com

- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Meet or Exceed the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operate With 3-V to 5.5-V V_{CC} Supply •
- Operate up to 1000 kbit/s
- **Five Drivers and Three Receivers** •
- **Auto-Powerdown Plus Feature Enables** Flexible Power-Down Mode
- Low Standby Current . . . 1 µA Typical •
- External Capacitors . . . $4 \times 0.1 \ \mu F$ •
- Accept 5-V Logic Input With 3.3-V Supply
- **Always-Active Noninverting Receiver Output** (ROUT1B)
- **ESD Protection for RS-232 Interface Pins** - ±15 kV - Human-Body Model (HBM)
 - ±8 kV IEC61000-4-2, Contact Discharge
 - ±15 kV IEC61000-4-2, Air-Gap Discharge

APPLICATIONS

- **Battery-Powered Systems**
- **PDAs**
- Notebooks
- **Subnotebooks**
- Laptops
- **Palmtop PCs**
- Hand-Held Equipment
- Modems
- **Printers**

DB, DW, OR PW PACKAGE

(TOP VIEW)

28 C1+

27 V+

26 Vcc

C2+[

GND 2

C2-[3

DESCRIPTION/ORDERING INFORMATION

The SN65C3238E and SN75C3238E consist of five line drivers, three line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM) protection on the driver output (DOUT) and receiver input (RIN) terminals. The devices meet the requirements of TIA/EIA-232-F and provide the electrical interface between notebook and subnotebook computer applications. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the devices include an always-active noninverting output (ROUT1B), which allows applications using the ring indicator to transmit data while the device is powered down. These devices operate at data signaling rates up to 1000 kbit/s.

PRODUCT PREVIEW

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DZSC.COM

SLLS726-MAY 2006

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

Flexible control options for power management are featured when the serial port and driver inputs are inactive. The auto-powerdown plus feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the devices do not sense valid signal transitions on all receiver and driver inputs for approximately 30 s, the built-in charge pump and drivers are powered down, reducing the supply current to 1 μ A. By disconnecting the serial port or placing the peripheral drivers off, auto-powerdown plus occurs if there is no activity in the logic levels for the driver inputs. Auto-powerdown plus can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown plus enabled, the devices activate automatically when a valid signal is applied to any receiver or driver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μ s. Refer to Figure 5 for receiver input voltages are between -0.3 V and 0.3 V for more than 30 μ s. Refer to Figure 5 for

T _A	PAG	CKAGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		Tube of 50	SN75C3238EDB	75022285	
	SSOP – DB	Reel of 2000	SN75C3238EDBR	- 75C3238E	
	TSSOP – PW	Tube of 50	SN75C3238EPW	Droviou	
0°C to 70°C	1330P - PW	Reel of 2000	SN75C3238EPWR	Preview	
	SOIC - DW	Tube of 50	SN75C3238EDW	75C3238E	
	3010 - 500	Reel of 2000	SN75C3238EDWR	- 7503238E	
	QFN – RHB	Reel of 2000	SN75C3238ECRHBR	Preview	
	SSOP – DB	Tube of 50	SN65C3238EDB	65C3238E	
	550P - DB	Reel of 2000	SN65C3238EDBR	- 05U3230E	
	TSSOP – PW	Tube of 50	SN65C3238EPW	Broviou	
–40°C to 85°C	1330P - PW	Reel of 2000	SN65C3238EPWR	- Preview	
	SOIC - DW	Tube of 50	SN65C3238EDW	65022285	
	5010 - DW	Reel of 2000	SN65C3238EDWR	- 65C3238E	
	QFN – RHB	Reel of 2000	SN65C3238EIRHBR	Preview	

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

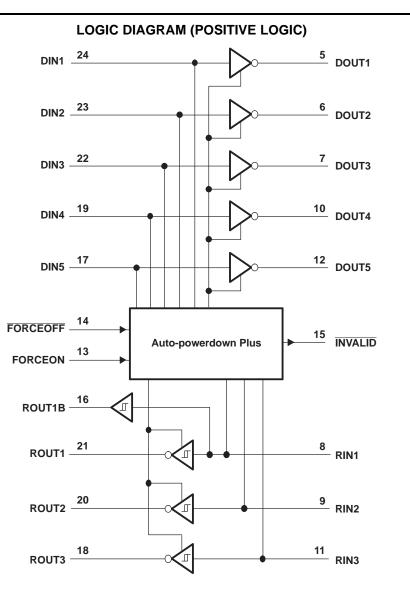
TEXAS INSTRUMENTS www.ti.com

SLLS726-MAY 2006

FUNCTION TABLES

Each Driver⁽¹⁾

		INPUTS		OUTPUT	
DIN	FORCEON	FORCEOFF	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	DOUT	DRIVER STATUS
Х	Х	L	Х	Z	Powered off
L	Н	Н	Х	Н	Normal operation with
н	Н	Н	Х	L	auto-powerdown plus disabled
L	L	Н	<30 s	Н	Normal operation with
н	L	Н	<30 s	L	auto-powerdown plus enabled
L	L	Н	>30 s	Z	Powered off by
н	L	Н	>30 s	Z	auto-powerdown plus feature


(1) H = high level, L = low level, X = irrelevant, Z = high impedance

Each Receiver⁽¹⁾

		INPUTS		OUT	IPUTS	
RIN1	RIN2-RIN3	FORCEOFF	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	ROUT1B	ROUT2 AND ROUT3	RECEIVER STATUS
L	Х	L	X	L	Z	Powered off while
н	х	L	x	Н	Z	ROUT1B is active
L	L	Н	<30 s	L	Н	
L	Н	Н	<30 s	L	L	Normal operation with
н	L	Н	<30 s	Н	н	auto-powerdown plus
н	н	Н	<30 s	Н	L	disabled/enabled
Open	Open	Н	<30 s	L	н	

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

SLLS726-MAY 2006

SLLS726-MAY 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive-output supply voltage range ⁽²⁾		-0.3	7	V
V–	Negative-output supply voltage range ⁽²⁾		0.3	-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
		Driver (FORCEOFF, FORCEON)	-0.3	-0.3 6	
V _I Ir	Input voltage range	Receiver	-25	25	V
M		Driver	-13.2	-13.2 13.2	
Vo	Output voltage range	Receiver (INVALID)	-0.3	V _{CC} + 0.3	V
		DB package		62	
0	Declare thermal impedance $(3)(4)$	DW package		46	°C/W
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	PW package		62	-0/00
		RHB package		TBD	
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to network GND.

(3) Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

See Figure 6

				MIN	NOM	MAX	UNIT
	Supply voltage		$V_{CC} = 3.3 V$	3	3.3	3.6	V
	Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	v
V	DIN, FORCEOFF,	$V_{CC} = 3.3 V$	2		5.5	V	
VIH	Driver and control high-level hiput voltage	FORCEON	$V_{CC} = 5 V$	2.4		5.5	v
V_{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FOR	CEON	0		0.8	V
VI	Receiver input voltage			-25		25	V
Ŧ	Operating free air temperature		SN75C3238E	0		70	°C
T _A	Operating free-air temperature		SN65C3238E	-40		85	C

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARA	METER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _I	Input leakage current	FORCEOFF, FORCEON			±0.01	±1	μΑ
		Auto-powerdown plus disabled	No load, FORCEOFF and FORCEON at V_{CC}		0.5	2	mA
I _{CC}	Supply current	Powered off	No load, FORCEOFF at GND		1	10	
	(T _A = 25°C)	Auto-powerdown plus enabled	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	10	μΑ

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

(2) All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^{\circ}$ C.

SLLS726-MAY 2006

DRIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TE	ST CONDITIONS	5	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to	GND		5	5.4		V
V_{OL}	Low-level output voltage	All DOUT at $R_L = 3 \ k\Omega$ to	GND		-5	-5.4		V
I _{IH}	High-level input current	$V_{I} = V_{CC}$				±0.01	±1	μA
I_{IL}	Low-level input current	V _I at GND				±0.01	±1	μA
	Short-circuit output current ⁽³⁾	V _{CC} = 3.6 V,	$V_0 = 0 V$			±35	±60	mA
los		V _{CC} = 5.5 V,	$V_0 = 0 V$			±40	±100	ША
r _o	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_0 = \pm 2 V$		300	10M		Ω
	Output leakage current	FORCEOFF = GND	$V_0 = \pm 12 V$,	V_{CC} = 3 V to 3.6 V			±25	^
I _{OZ}	Oulput leakage cullent	FORGEOFF = GND	$V_0 = \pm 10 V$,	V_{CC} = 4.5 V to 5.5 V			±25	μA

Testing supply conditions are C1-C4 = 0.1 μF at V_{CC} = 3.3 V ± 0.15 V; C1-C4 = 0.22 μF at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μF and C2-C4 = 0.33 μF at V_{CC} = 5 V ± 0.5 V.
All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.
Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one

output should be shorted at a time.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate (see Figure 1)		$C_{L} = 1000 \text{ pF}$		250			
		$R_L = 3 k\Omega$, One DOUT switching	C _L = 250 pF,	V_{CC} = 3 V to 4.5 V	1000			kbit/s
		one beer entering	C _L = 1000 pF,	V_{CC} = 4.5 V to 5.5 V	1000			
t _{sk(p)}	Pulse skew ⁽³⁾	$C_{L} = 150 \text{ pF} \text{ to } 2500 \text{ pF},$	$R_L = 3 \ k\Omega$ to 7 k Ω ,	See Figure 2		25		ns
SR(tr)	Slew rate, transition region (see Figure 1)	$C_{L} = 150 \text{ pF to } 1000 \text{ pF},$	$R_L = 3 \ k\Omega$ to 7 k Ω ,	V _{CC} = 3.3 V	18		150	V/µs

Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.4 V ± 0.3 V; (1) and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device.

(2)

(3)

ESD Protection

PARAMETER	TEST CONDITIONS	TYP	UNIT
	НВМ	±15	
DOUT	IEC 61000-4-2, Air-Gap Discharge	±15	kV
	IEC 61000-4-2, Contact Discharge	±8	

SLLS726-MAY 2006

RECEIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	$V_{CC} - 0.6$	V _{CC} – 0.1		V
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
V	Positive-going input threshold voltage	$V_{CC} = 3.3 V$		1.5	2.4	V
V _{IT+}	Positive-going input theshold voltage	$V_{CC} = 5 V$		1.8	2.4	v
V	Negotive going input threshold voltage	$V_{CC} = 3.3 V$	0.6	1.2		V
V _{IT-}	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.5		v
V _{hys}	Input hysteresis (V _{IT+} – V _{IT} –)			0.3		V
I _{OZ}	Output leakage current (except ROUT1B)	FORCEOFF = 0 V		±0.05	±10	μA
r _i	Input resistance	$V_I = \pm 3 V \text{ to } \pm 25 V$	3	5	7	kΩ

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 and C2–C4 = 0.33 μF at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(2)

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$C_L = 150 \text{ pF}$, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	$C_L = 150 \text{ pF}$, See Figure 3	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	50	ns

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.0 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.0 V \pm 0.3 V; and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

ESD Protection

PARAMETER	TEST CONDITIONS	TYP	UNIT
	НВМ	±15	
RIN	IEC 61000-4-2, Air-Gap Discharge	±15	kV
	IEC 61000-4-2, Contact Discharge	±8	

SLLS726-MAY 2006

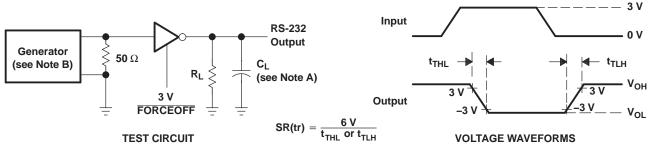
AUTO-POWERDOWN PLUS SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$		2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	$I_{OH} = -1 \text{ mA}$, FORCEON = GND, FORCEOFF = V _{CC}	V _{CC} – 0.6		V
V _{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = GND, FORCEOFF = V _{CC}		0.4	V

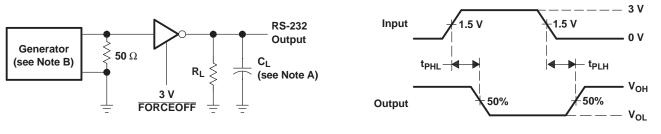
Switching Characteristics


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{valid}	Propagation delay time, low- to high-level output		0.1		μs
t _{invalid}	Propagation delay time, high- to low-level output		50		μs
t _{en}	Supply enable time		25		μs
t _{dis}	Receiver or driver edge to auto-powerdown plus	15	30	60	S

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25 ^{\circ}C.

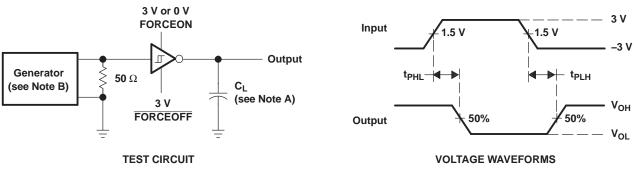
SLLS726-MAY 2006


A. C_L includes probe and jig capacitance.

♥ Texas Instruments

www.ti.com

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_O = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.


Figure 1. Driver Slew Rate

TEST CIRCUIT

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew

A. C_L includes probe and jig capacitance.


B. The pulse generator has the following characteristics: $Z_O = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \text{ ns}$, $t_f \le 10 \text{ ns}$.

Figure 3. Receiver Propagation Delay Times

PRODUCT PREVIEW

VOLTAGE WAVEFORMS

SLLS726-MAY 2006

PARAMETER MEASUREMENT INFORMATION (continued)

TEXAS INSTRUMENTS

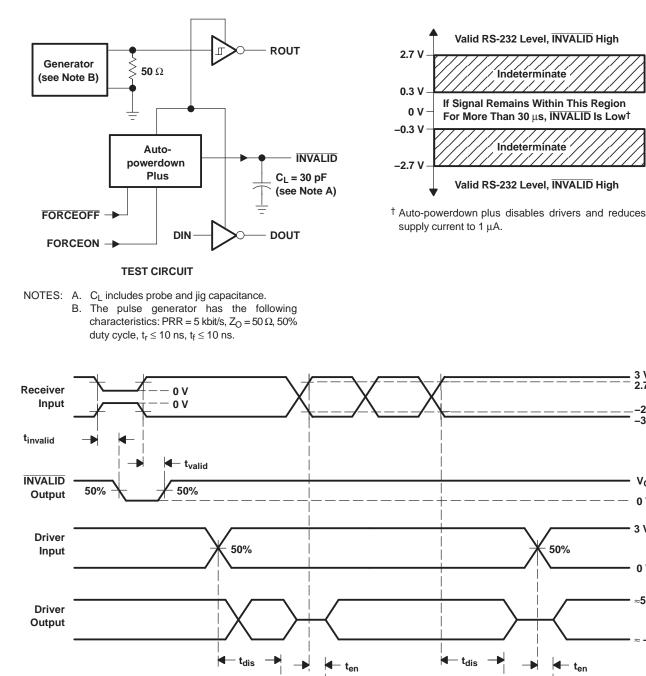
www.ti.com

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \text{ ns}$, $t_f \le 10 \text{ ns}$.
- C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- D. t_{PZL} and t_{PZH} are the same as t_{en} .

Figure 4. Receiver Enable and Disable Times

SN65C3238E, SN75C3238E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS

Ü Texas INSTRUMENTS www.ti.com


V-

V-

Supply Voltages WITH ±15-kV ESD (HBM) PROTECTION

SLLS726-MAY 2006

PRODUCT PREVIEW

3 V 2.7 V

-2.7 V –3 V

 v_{cc}

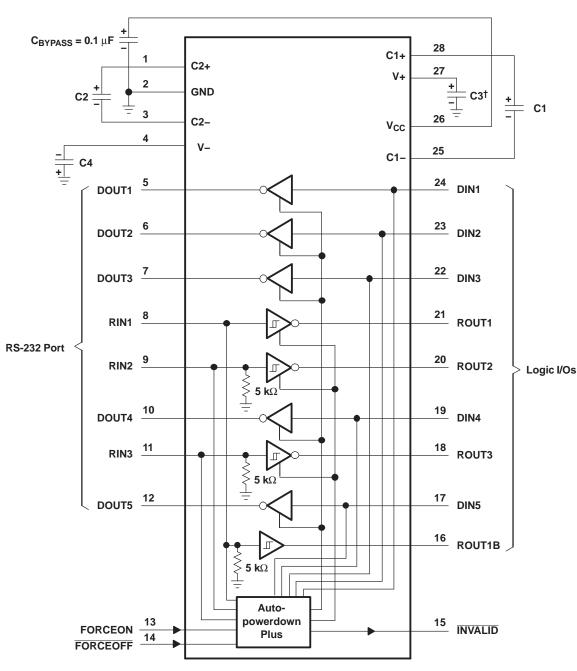
0 V

0 V

≈5.5 V

≈ –5.5 V

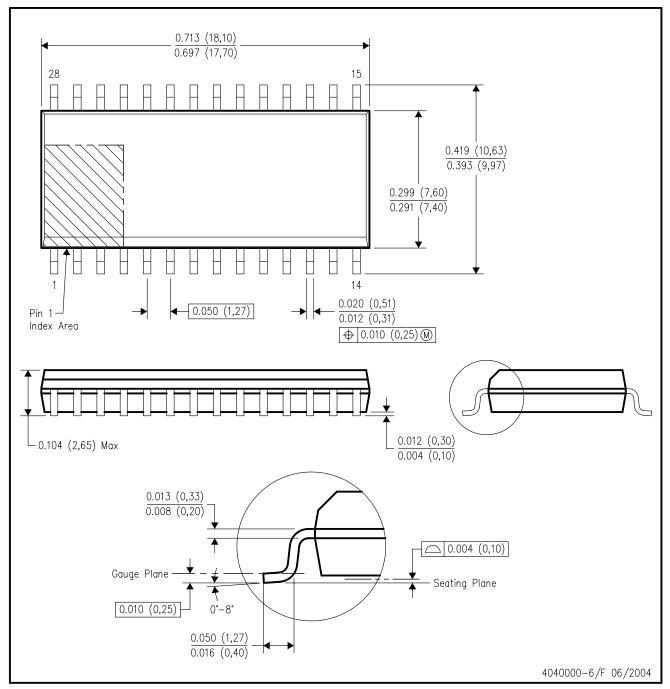
V+ -0.3 V


V-+0.3 V

3 V to 5 V

Voltage Waveforms and Timing Diagrams Figure 5. INVALID Propagation-Delay Times and Supply-Enabling Time

APPLICATION INFORMATION


V_{CC} vs CAPACITOR VALUES

V_{CC} **C**1 C2, C3, and C4 ^{\dagger} C3 can be connected to V_{CC} or GND. 3.3 V ± 0.15 V **0.1** μF **0.1** μF NOTES: A. Resistor values shown are nominal. $\textbf{3.3 V} \pm \textbf{0.3 V}$ 0.22 μF 0.22 μF B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum **0.047** μF 0.33 μF or electrolytic capacitors are used, they should be connected as $5~V\pm0.5~V$ 3 V to 5.5 V **0.22** μ**F 1 μF** shown.

Figure 6. Typical Operating Circuit and Capacitor Values

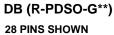
DW (R-PDSO-G28)

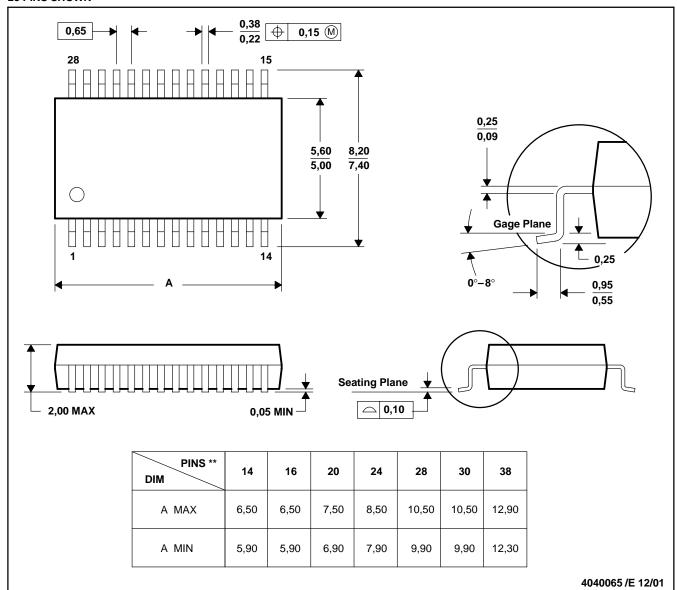
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-013 variation AE.



MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265