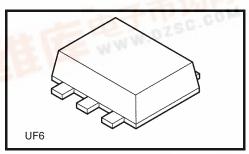
TC7SP3066,3067TU

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7SP3066TU,TC7SP3067TU


TC7SP3066TU TC7SP3067TU Low Voltage Dual Supply Single Bus Switch (analog)
Low Voltage Dual Supply Single Bus Switch (analog)

The TC7SP3066 and TC7SP3067 are high-speed CMOS one-bit analog bus switches with separate power supplies for control and switch portions. In the TC7SP3066, the switch is on when Output Enable ($\overline{\text{OE}}$) is High. In the TC7SP3067, the switch is on when Output Enable ($\overline{\text{OE}}$) is Low.

The TC7SP3066 and TC7SP3067 support power-down protection by incorporating 3.6-V-torelant control inputs.

These devices are suitable for applications where the control voltage is lower than the signal line voltage.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Weight: 0.007 g (typ.)

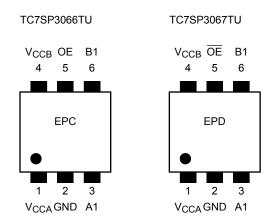
Features

• Operating voltage range:

V_{CCA} = 1.1 to 2.7 V (Control portion) V_{CCB} = 1.65 to 3.6 V (Switch portion)

• ON-resistance: $RON = 8 \Omega \text{ (max)} \text{ (VCCB} = 2.7 \text{ V)}$

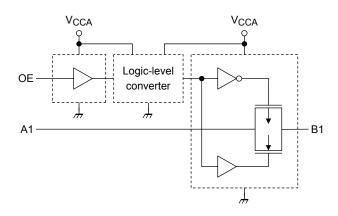
 $R_{ON} = 10 \Omega \text{ (max) (V}_{CCB} = 2.3 \text{ V)}$


• ESD performance: Machine model $\geq \pm 200 \text{ V}$ Human body model $\geq \pm 2000 \text{ V}$

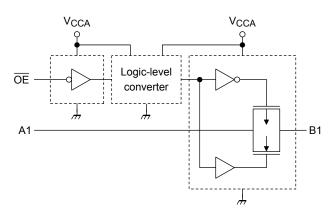
• Ultra-small package: UF6

• 3.6-V tolerance function and power-down protection at the Output Enable input.

Pin Assignment (top view)



Truth Table


Input (3066)	Function	Input (3067)	Function		
OE	1 dilodori	Œ	1 unction		
Н	Aport = Bport	Н	Disconnected		
L	Disconnected	L	Aport = Bport		

Circuit Schematic

TC7SP3066TU

TC7SP3067TU

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage (Note 2)	V_{CCA}	-0.5 to 4.6	V
rower supply voltage (Note 2)	V _{CCB}	-0.5 to 4.6	V
Control input voltage (OE (3066)/ OE (3067))	V _{IN}	-0.5 to 4.6	V
Switch input/output voltage	Vs	-0.5 to V _{CCB} + 0.5	٧
Diode current in the control portion	I _{IK}	-25	mA
Diode current in the switch portion	I _{IK}	±50 (Note 3)	mA
Switch input/output current	IS	128	mA
DC V _{CC} /ground current	I _{CCA}	±50	mA
DC VCC/ground current	I _{CCB}	±100	IIIA
Power dissipation	P _D	200	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: Do not supply a voltage to the V_{CCB} pin when V_{CCA} is in the OFF state.

Note 3: $V_S < GND, V_S > V_{CCB}$

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CCA}	1.1 to 2.7	V
1 ower supply voltage	V _{CCB}	1.65 to 3.6	v
Control input voltage	V _{IN}	0 to 3.6	V
Switch input/output voltage	Vs	0 to V _{CCB}	V
Operating temperature	T _{opr}	-40 to 85	°C
Control input rise and fall times	dt/dv	0 to 10	ns/V

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{CCA} or GND.

Electrical Characteristics

DC Characteristics (1.1 V \leq V_{CCA} \leq 2.7 V, 1.65 V \leq V_{CCB} \leq 3.6 V)

Characteristics Symbol		Test Condition		V _{CCA} (V)	V _{CCB} (V)	Ta = -40 to 85°C		Unit
		rest Gondition				Min	Max	
				1.1 ≤ V _{CCA} < 1.4	1.65 to 3.6	0.70 × V _{CCA}	_	V
High-level input voltage	V_{IH}	OE (3066), \overline{O}	ŌĒ (3067)	$1.4 \le V_{CCA} < 1.65$	1.65 to 3.6	0.70 × V _{CCA}		V
				$1.65 \leq V_{CCA} < 2.3$	2.3 to 3.6	0.70 × V _{CCA}	_	V
				$2.3 \leq V_{CCA} \leq 2.7$	2.7 to 3.6	1.6	_	V
				$1.1 \leq V_{CCA} < 1.4$	1.65 to 3.6	_	0.30 × V _{CCA}	V
Low-level input voltage	V _{IL}	OE (3066), OE (3067)		$1.4 \le V_{CCA} < 1.65$	1.65 to 3.6	_	0.30 × V _{CCA}	V
, .				1.65 ≤ V _{CCA} < 2.3	2.3 to 3.6	_	0.30 × V _{CCA}	V
				$2.3 \leq V_{CCA} \leq 2.7$	2.7 to 3.6	_	0.7	V
	D	V _{IS} = 0 V	$I_{IS} = 30 \text{ mA}$	1.1 to 2.7	2.7	_	8	
		$V_{IS} = 2.7 \text{ V}$	$I_{IS} = 30 \text{ mA}$	1.1 to 2.7	2.7	_	12	
ON-resistance (Note)		V _{IS} = 2.1 V	$I_{IS} = 15 \text{ mA}$	1.1 to 2.7	2.7	_	20	Ω
ON-resistance (Note)	R _{ON}	$V_{IS} = 0 V$	$I_{IS} = 24 \text{ mA}$	1.1 to 2.3	2.3	_	10	22
		$V_{IS} = 2.3 \text{ V}$	$I_{IS} = 24 \text{ mA}$	1.1 to 2.3	2.3	_	15	
		V _{IS} = 2.0 V	$I_{IS} = 15 \text{ mA}$	1.1 to 2.3	2.3	_	25	
Switch-off leakage current	I _{SZ}	$\frac{A1, B1 = 0 \text{ to } V}{OE} = V_{CCA},$		1.1 to 2.7	1.65 to 3.6	_	±2.0	μА
Control input current	I _{IN}	OE or OE = 0 to 3.6 V		1.1 to 2.7	1.65 to 3.6	_	±1.0	μА
	ICCA	$V_{IN} = V_{CCA}$ or GND, $I_S = 0$ A		1.1 to 2.7	1.65 to 3.6	_	4.0	
Outgoognt ounnly ourse	I _{CCB}	V _{IN} = V _{CCA} or	GND, I _S = 0 A	1.1 to 2.7	1.65 to 3.6	_	4.0	μΑ
Quiescent supply current	ICCA	$V_{CCA} \leq V_{IN} \leq$	3.6 V, I _S = 0 A	1.1 to 2.7	1.65 to 3.6	_	4.0	
	I _{CCB}	$V_{CCA} \leq V_{IN} \leq$	3.6 V, I _S = 0 A	1.1 to 2.7	1.65 to 3.6	_	4.0	

Note: ON-resistance is measured by measuring the voltage drop across the switch at the indicated current. V_{IS} is defined as the lower voltage at the A and B pins.

AC Characteristics (Ta = -40 to 85°C, Input: $t_r = t_f = 2.0$ ns)

$V_{CCA} = 2.5 \pm 0.2$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time (bus to bus)	t _{pLH} t _{pHL}	Figures 1 and 2 (Note)	_	0.25	
3-state output enable time	t _{pZL} t _{pZH}	Figures 1 and 3	_	7	ns
3-state output disable time	t _{pLZ} t _{pHZ}	Figures 1 and 3	_	7	

Note: Calculated from the RC time constant of the ON-resistance of the output and the capacitive load.

$V_{CCA} = 1.8 \pm 0.15 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V}$

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time (bus to bus)	t _{pLH} t _{pHL}	Figures 1 and 2 (Note)	_	0.25	
3-state output enable time	^t pZL t _{pZH}	Figures 1 and 3	l	9	ns
3-state output disable time	^t pLZ t _{pHZ}	Figures 1 and 3		9	

Note: Calculated from the RC time constant of the ON-resistance of the output and the capacitive load.

$V_{CCA} = 1.5 \pm 0.1 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V}$

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time (bus to bus)	t _{pLH} t _{pHL}	Figures 1 and 2 (Note)	_	0.25	
3-state output enable time	^t pZL t _{pZH}	Figures 1 and 3		12	ns
3-state output disable time	^t pLZ t _{pHZ}	Figures 1 and 3		12	

Note: Calculated from the RC time constant of the ON-resistance of the output and the capacitive load.

$V_{CCA} = 1.2 \pm 0.1 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V}$

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time (bus to bus)	t _{pLH} t _{pHL}	Figures 1 and 2 (Note)	_	0.25	
3-state output enable time	t _{pZL} t _{pZH}	Figures 1 and 3		20	ns
3-state output disable time	t _{pLZ} t _{pHZ}	Figures 1 and 3	_	20	

Note: Calculated from the RC time constant of the ON-resistance of the output and the capacitive load.

2007-10-19

 $V_{CCA} = 1.8 \pm 0.15 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V}$

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time (bus to bus)	t _{pLH} t _{pHL}	Figures 1 and 2 (Note)	_	0.61	
3-state output enable time	^t pZL t _{pZH}	Figures 1 and 3	_	11	ns
3-state output disable time	^t pLZ t _{pHZ}	Figures 1 and 3	_	11	

Note: Calculated from the RC time constant of the ON-resistance of the output and the capacitive load.

$V_{CCA} = 1.5 \pm 0.1$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time (bus to bus)	t _{pLH} t _{pHL}	Figures 1 and 2 (Note)	_	0.61	
3-state output enable time	t _{pZL} t _{pZH}	Figures 1 and 3	_	12	ns
3-state output disable time	t _{pLZ} t _{pHZ}	Figures 1 and 3	_	12	

Note: Calculated from the RC time constant of the ON-resistance of the output and the capacitive load.

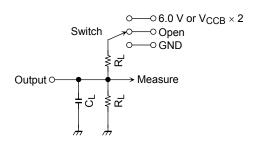
V_{CCA} = 1.2 \pm 0.1 V, V_{CCB} = 2.5 \pm 0.2 V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time (bus to bus)	t _{pLH} t _{pHL}	Figures 1 and 2 (Note)	_	0.61	
3-state output enable time	t _{pZL} t _{pZH}	Figures 1 and 3		17	ns
3-state output disable time	t _{pLZ} t _{pHZ}	Figures 1 and 3		17	

Note: Calculated from the RC time constant of the ON-resistance of the output and the capacitive load.

$V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 1.8 \pm 0.15$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time (bus to bus)	t _{pLH} t _{pHL}	Figures 1 and 2 (Note)	_	1.15	
3-state output enable time	t _{pZL} t _{pZH}	Figures 1 and 3	l	25	ns
3-state output disable time	t _{pLZ} t _{pHZ}	Figures 1 and 3		25	


6

Note: Calculated from the RC time constant of the ON-resistance of the output and the capacitive load.

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CCA} (V)	V _{CCB} (V)	Тур.	Unit
Control input capacitance	C _{IN}		2.5	3.3	7	pF
Switch input/output capacitance	C _{I/O}	$\overline{OE} = V_{CCA}, OE = GND$	2.5	3.3	10	pF

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
	6.0 V	@ $V_{CCB} = 3.3 \pm 0.3 \text{ V}$	
^t pLZ ^{, t} pZL	V _{CCB} × 2	@ $V_{CCB} = 2.5 \pm 0.2 \text{ V}$ @ $V_{CCB} = 1.8 \pm 0.15 \text{ V}$	
t _{pHZ} , t _{pZH}		GND	

Symbol	V _{CCB} (output)		
	$\begin{array}{c} 3.3 \pm 0.3 \; \text{V} \\ 2.5 \pm 0.2 \; \text{V} \end{array}$	1.8 ± 0.15 V	
R_L	500 Ω	1 kΩ	
C_L	30 pF	30 pF	

Figure 1

AC Test Waveform

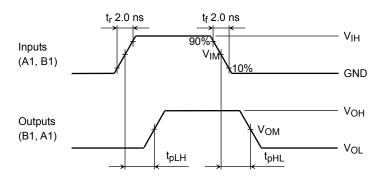


Figure 2 t_{pLH}, t_{pHL}

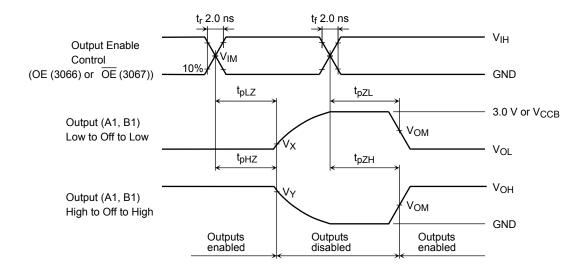
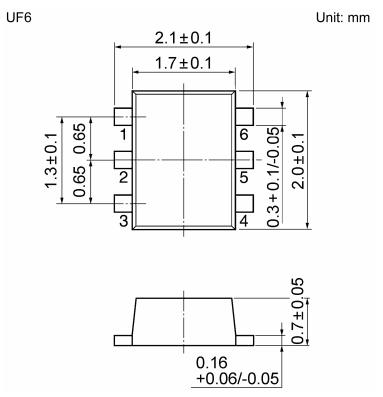



Figure 3 $t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}$

		V _{CCA} or V _{CCB}		
	Symbol	$3.3\pm0.3~\textrm{V}$	$\begin{array}{c} 2.5 \pm 0.2 \ \text{V} \\ 1.8 \pm 0.15 \ \text{V} \end{array}$	$\begin{array}{c} 1.5 \pm 0.1 \ V \\ 1.2 \pm 0.1 \ V \end{array}$
Input	V _{IH}	_	V _{CCA}	V _{CCA}
	V _{IM}	_	V _{CCA} /2	V _{CCA} /2
	V _{OM}	V _{OH} /2	V _{OH} /2	_
Output V _X	V _X	V _{OL} + 0.3 V	V _{OL} + 0.15 V	_
	V _Y	V _{OH} – 0.3 V	V _{OH} – 0.15 V	_

Package Dimensions

Weight: 0.007 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.