

捷多邦,专业PCB打样工厂,24小时加急出货

CY7C107BN CY7C1007BN

1M x 1 Static RAM

Features

- High speed
 - t_{AA} = 15 ns
- CMOS for optimum speed/power
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C107BN and CY7C1007BN are high-performance CMOS static RAMs organized as 1,048,576 words by 1 bit. Easy memory expansion is provided by an active LOW Chip Enable (CE) and three-state drivers. These devices have an automatic power-down feature that reduces power consumption by more than 65% when deselected.

<u>Writing</u> to the devices is <u>ac</u>complished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the input pin (D_{IN}) is written into the memory location specified on the address pins (A₀ through A₁₉).

Reading <u>from</u> the devices is accomplished by taking Chip Enable (CE) LOW while Write Enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the data output (D_{OUT}) pin.

The output pin (D_{OUT}) is placed in a high-impedance state when the <u>device</u> is <u>deselected</u> (CE HIGH) or during a write operation (CE and WE LOW).

The CY7C107BN is available in a standard 400-mil-wide SOJ; the CY7C1007BN is available in a standard 300-mil-wide SOJ

Selection Guide

	7C107BN-15 7C1007BN-15
Maximum Access Time (ns)	15
Maximum Operating Current (mA)	80
Maximum CMOS Standby Current I _{SB2} (mA)	2

pdf.dzsc.com

Cypress Semiconductor Corporation • 198 Champion Court • San Jose CA 95134-1709 • 408-943-2600

Maximum Ratings

(Above which the useful life may be impaired. For user guide- lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage on V_{CC} Relative to $GND^{[1]}$ 0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State ^[1] 0.5V to V_{CC} + 0.5V DC Input Voltage ^[1] 0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	.>200 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%

Electrical Characteristics Over the Operating Range

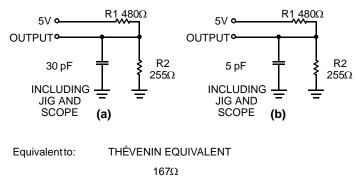
			7C107 7C100		
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA	2.4		V
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]		-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	-1	+1	mA
I _{OZ}	Output Leakage Current	$GND \leq V_I \leq V_{CC},$ Output Disabled	-5	+5	mA
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA,$ f = f _{MAX} = 1/t _{RC}		80	mA
I _{SB1}	Automatic CE Power-Down Current— TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \overline{CE} \geq V_{IH}, V_{IN} \geq V_{IH} \text{ or} \\ V_{IN} \leq V_{IL}, \text{ f = f }_{MAX} \end{array}$		20	mA
I _{SB2}	Automatic CE Power-Down Current — CMOS Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \overline{\text{CE}} \geq V_{CC} - 0.3\text{V}, \\ V_{\text{IN}} \geq V_{CC} - 0.3\text{V} \text{ or } V_{\text{IN}} \leq 0.3\text{V}, \text{f} = 0 \end{array}$		2	mA

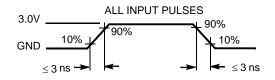
Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN} : Addresses	Input Capacitance	$T_A = 25 \times C$, f = 1 MHz,	7	pF
C _{IN} : Controls		$V_{CC} = 5.0V$	10	pF
C _{OUT}	Output Capacitance		10	pF

Notes:

Notes:


 V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 T_A is the "Instant On" case temperature.
 Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
 Tested initially and after any design or process changes that may affect these parameters.



OUTPUT -

CY7C107BN CY7C1007BN

AC Test Loads and Waveforms

Switching Characteristics^[5] Over the Operating Range

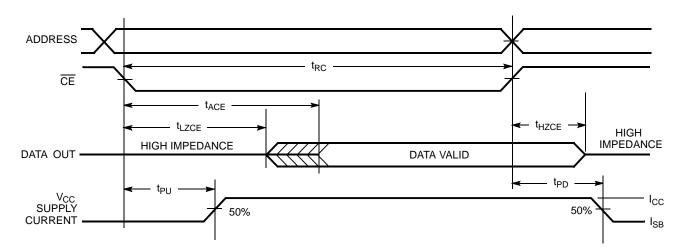
-~~~

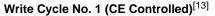
____0 1.73V

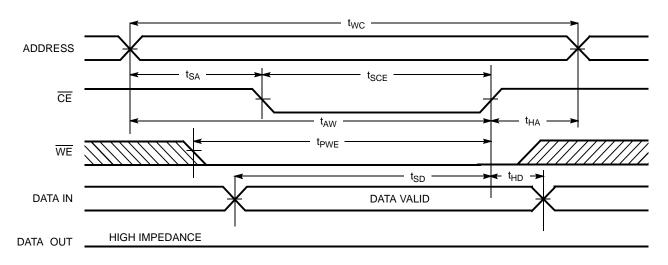
		7C107 7C100			
Parameter	Description	Min.	Max.	Unit	
READ CYCLE			·		
t _{RC}	Read Cycle Time	15		ns	
t _{AA}	Address to Data Valid		15	ns	
t _{OHA}	Data Hold from Address Change	3		ns	
t _{ACE}	CE LOW to Data Valid		15	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	3		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		7	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		15	ns	
			l	1	
/C Write Cycle Time		15		ns	
SCE CE LOW to Write End		12		ns	
t _{AW} Address Set-Up to Write End		12		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE} WE Pulse Width		12		ns	
t _{SD}	Data Set-Up to Write End	8		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	3		ns	
t _{HZWE}	$\overline{\text{WE}}$ LOW to High Z ^[6, 7]		7	ns	

Notes:

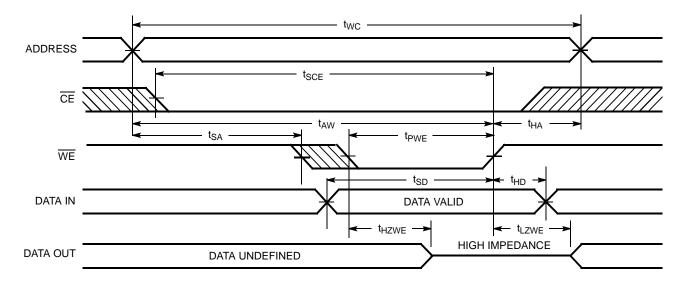
Notes:
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{OL}/l_{OH} and 30-pF load capacitance.
6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} and t_{HZWE} is less than t_{LZWE} for any given device.
7. t_{HZCE} and t_{HZWE} are specified with a load capacitance of 5 pF as <u>in part</u> (b) of <u>AC</u> Test Loads. Transition is measured ±500 mV from steady-state voltage.
8. The internal write time of the memory is defined by the overlap of <u>CE</u> LOW and <u>WE</u> LOW. <u>CE</u> and <u>WE</u> must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.




Switching Waveforms


Read Cycle No. 1^[10, 11]

Read Cycle No. 2^[11, 12]


Notes:

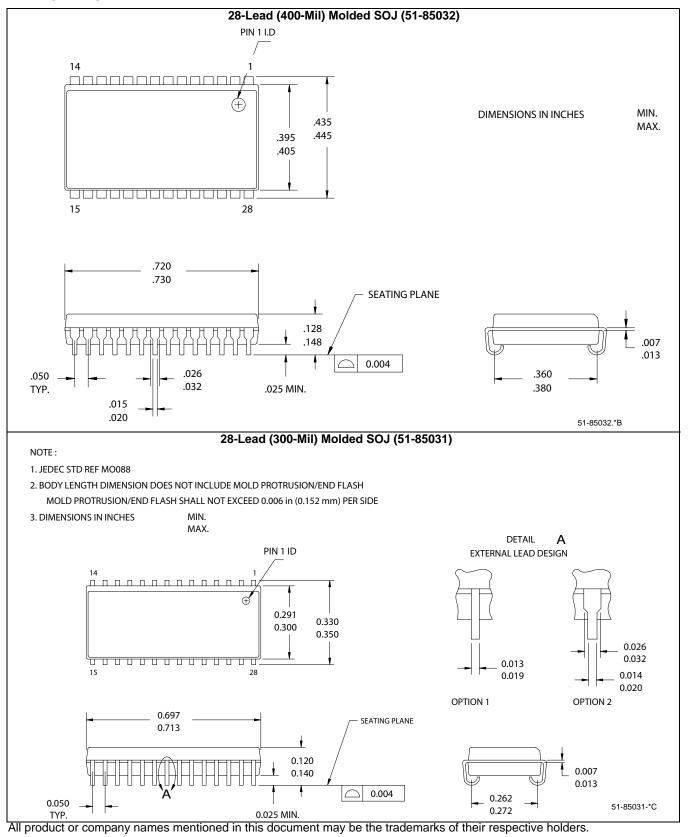
9. No input may exceed V_{CC} + 0.5V. 10. <u>Device</u> is continuously selected, $\overline{CE} = V_{\parallel L}$. 11. WE is HIGH for read cycle. 12. Address valid prior to or coincident with \overline{CE} transition LOW. 13. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 2 (WE Controlled)^[13]

Truth Table

CE	WE	D _{OUT}	Mode	Power
Н	Х	High Z	Power-Down	Standby (I _{SB})
L	Н	Data Out	Read	Active (I _{CC})
L	L	High Z	Write	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
15	CY7C107BN-15VC	51-85032	28-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1007BN-15VC	51-85031	28-Lead (300-Mil) Molded SOJ	
	CY7C1007BN-15VXC	51-85031	28-Lead (300-Mil) Molded SOJ (Pb-free)	
	CY7C107BN-15VI	51-85032	28-Lead (400-Mil) Molded SOJ	Industrial

Please contact local sales representative regarding availability of these parts

Package Diagrams

ed herein is subject to change without notice. Cypress Semiconductor (

Document #: 001-06426 Rev. **

© Cypress Semiconductor Corporation

Document History Page

Document Title: CY7C107BN/CY7C1007BN 1M x 1 Static RAM Document Number: 001-06426				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	423847	See ECN	NXR	New Data Sheet