查询MSK5330-5.0供应商

捷多邦,专业75001增0012CEP中国和地区 BY DSCC

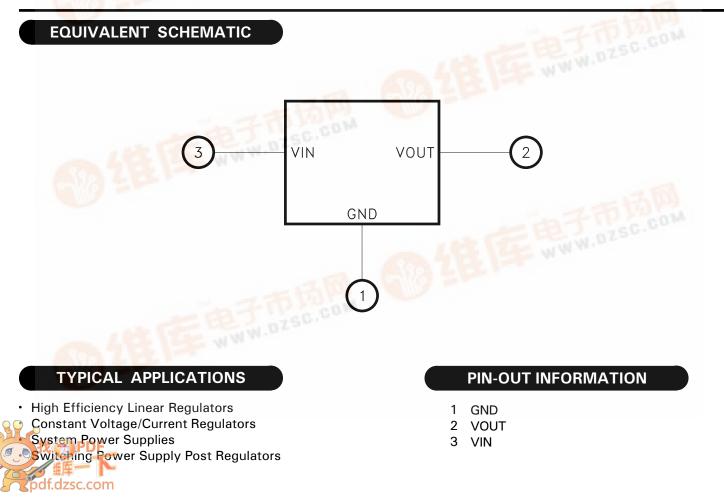
NEGATIVE, 3 AMP, LOW DROPOUT VOLTAGE REGULATOR

M.S.KENNEDY CORP.

(315) 701-6751

SERIES

4707 Dey Road Liverpool, N.Y. 13088


FEATURES:

- -5V, -5.2V, -10V, -12V and -15V Standard Versions
- Low Dropout Voltage
- Output Current to 3 Amps
- Output Voltage Internally Set to $\pm 1\%$ MAX. •
- Internal Short Circuit Current Limit
- Internal Thermal Overload Protection
- Hermetic Surface Mount Package
- Alternate Output Voltages Available •

DESCRIPTION:

The MSK 5330 is a fixed, negative voltage regulator which offers low dropout and output voltage accuracy to ±1% maximum. The low tic combined with low dropout allows increased output current and excellent device efficiency. The MSK 5330 offers both internal current limit and thermal overload protection. The device is packaged in a space efficient 3 pin power surface mount ceramic package.

ABSOLUTE MAXIMUM RATINGS

-Vin	Input Voltage (WRT Vout)	Тsт
PD	Power Dissipation Internally Limited	TLD
Іоит	Output Current	
TJ	Junction Temperature + 175°C	Tc

9

т	Storage Temperature Range65°C to +150°C
D	Lead Temperature Range
	(10 Seconds)
;	Case Operating Temperature
	MSK 5330H/E
	MSK 5330

ELECTRICAL SPECIFICATIONS

Parameter	Test Conditions ③	Group A	MSK 5330H/E			MSK 5330			Units
raianetei	lest conditions 3		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Output Voltage Telerance	100 = 10 = 10	1	-	0.1	1.0	-	0.1	2.0	%
Output Voltage Tolerance	IOUT = 10mA; VIN = VOUT + 3V		-	0.1	2.0	-	-	-	%
Dropout Voltage ②	0A≤louτ≤3A; ΔVouτ = 1%	1	-	0.8	1.2	-	0.8	1.3	V
Lood Doculation	100mA≤louт≤3A	1	-	0.2	1.0	-	0.2	2.0	%
Load Regulation	$V_{IN} = V_{OUT} + 3V$	2,3	-	0.3	2.0	-	-	-	%
Line Devulation	Iout = 10mA	1	-	0.1	0.5	-	0.1	0.6	%
Line Regulation	(Vout + 3V)≤Vin≤(Vout + 15V)	2,3	-	0.2	0.75	-	-	-	%
Quiescent Current	$V_{IN} = V_{OUT} + 3V; I_{OUT} = 0A$	1,2,3	-	4.5	10	-	4.5	10	mA
Short Circuit Current 2	$V_{IN} = V_{OUT} + 5V$	-	3.3	3.6	-	3.0	3.6	-	А
Ripple Rejection ②	lout = 3A; Cout = 25μ F; f = 120Hz	-	60	75	-	60	75	-	dB
Thermal Resistance 2	JUNCTION TO CASE @ 125°C	-	-	4.2	4.6	-	4.2	5.0	°C/W
Thermal Shutdown	TJ	-	-	150	-	-	150	-	°C

PART ⑦ NUMBER	OUTPUT VOLTAGE
MSK5330-5.0	-5.0V
MSK5330-5.2	-5.2V
MSK5330-10	-10.0V
MSK5330-12	-12.0V
MSK5330-15	-15.0V

NOTES:

- (1) Output is decoupled to ground using 33μ F minimum, low ESR capacitors unless otherwise specified.
- 2 Guaranteed by design but not tested. Typical parameters are representative of actual device
- performance but are for reference only.
- (3) All output parameters are tested using a low duty cycle pulse to maintain $T_J = T_C$. (4) Industrial grade and "E" suffix devices shall be tested to subgroup 1 unless otherwise specified. (5) Military grade devices ("H" suffix) shall be 100% tested to subgroups 1,2 and 3. (6) Subgroup 1 $T_A = T_C = +25 \,^{\circ}C$ 2 $T_A = T_C = +125 \,^{\circ}C$
- - $3 T_A = T_C = -55 °C$
- Please consult the factory if alternate output voltages are required.
 Input voltage (VIN = VOUT + a specified voltage) is implied to be more negative than VOUT.
- (9) Continuous operation at or above absolute maximum ratings may adversely effect the device performance and/or life cycle

APPLICATION NOTES

BYPASS CAPACITORS

For most applications a 33uF minimum, low ESR (0.5-2 ohm) tantalum capacitor should be attached as close to the regulator's output as possible. This will effectively lower the regulator's output impedance, increase transient response and eliminate any oscillations that are normally associated with low dropout regulators. Additional bypass capacitors can be used at the remote load locations to further improve regulation. These can be either of the tantalum or the electrolytic variety. Unless the regulator is located very close to the power supply filter capacitor(s), a 4.7uF minimum low ESR (0.5-2 ohm) tantalum capacitor should also be added to the regulator's input. An electrolytic may also be substituted if desired. When substituting electrolytic in place of tantalum capacitors, a good rule of thumb to follow is to increase the size of the electrolytic by a factor of 10 over the tantalum value.

LOAD REGULATION

For best results the ground pin should be connected directly to the load as shown below, this effectively reduces the ground loop effect and eliminates excessive voltage drop in the sense leg. It is also important to keep the output connection between the regulator and the load as short as possible since this directly affects the load regulation. For example, if 20 gauge wire were used which has a resistance of about .008 ohms per foot, this would result in a drop of 8mV/ft at 1Amp of load current. It is also important to follow the capacitor selection guidelines to achieve best performance. Refer to Figure 1 for connection diagram.

MSK 5330 TYPICAL APPLICATION:

Low Dropout Negative Power Supply

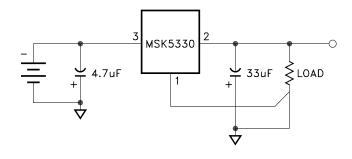


FIGURE 1

OVERLOAD SHUTDOWN

The MSK 5330 features both power and thermal overload protection. When the maximum power dissipation is not exceeded, the regulator will current limit slightly above its 3 amp rating. As the Vin-Vout voltage increases, however, shutdown occurs in relation to the maximum power dissipation curve. If the device heats enough to exceed its rated die junction temperature due to excessive ambient temperature, improper heat sinking etc., the regulator will shutdown until an appropriate junction temperature is maintained. It should also be noted that in the case of an extreme overload, such as a sustained direct short, the device may not be able to recover. In these instances, the device must be shut off and power reapplied to eliminate the shutdown condition.

HEAT SINKING

To determine if a heat sink is required for your application and if so, what type, refer to the thermal model and governing equation below.

Governing Equation: $Tj = Pd x (R_{\theta}jc + R_{\theta}cs + R_{\theta}sa) + Ta$

WHERE

- Tj = Junction Temperature
- Pd = Total Power Dissipation
- $R_{\theta jc}$ = Junction to Case Thermal Resistance
- Recs = Case to Heat Sink Thermal Resistance
- Resa = Heat Sink to Ambient Thermal Resistance
- Tc = Case Temperature
- Ta = Ambient Temperature
- Ts = Heat Sink Temperature

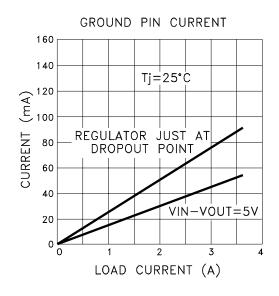
EXAMPLE:

This example demonstrates an analysis where the regulator is at one-half of its maximum rated power dissipation, which occurs when the output current is at 1.5 amps.

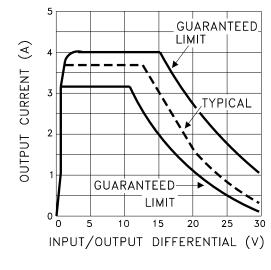
Conditions for MSK 5330-5:

Vin = -7.0V; Iout = -1.5A

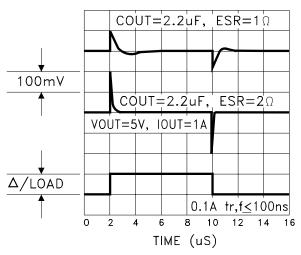
1.) Assume 45° heat spreading model.

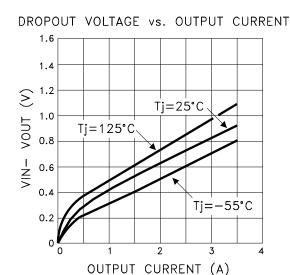

2.) Find regulator power dissipation:

3.) For conservative design, set $T_j = +125^{\circ}C$ Max.

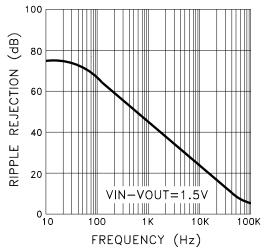

- 4.) For this example, worst case $Ta = +90^{\circ}C$.
- 5.) $R_{\theta jc} = 4.6 \,^{\circ}C/W$ from the Electrical Specification Table.
- 6.) $R_{\theta}cs = 0.15^{\circ}C/W$ for most thermal greases.
- 7.) Rearrange governing equation to solve for $R_{\theta}sa$:
 - $R_{\theta}sa = ((Tj Ta)/Pd) (R_{\theta}jc) (R_{\theta}cs)$
 - = (125°C 90°C)/3.0W 4.6°C/W 0.15°C/W = 6.9°C/W

In this case the result is 6.9° C/W. Therefore, a heat sink with a thermal resistance of no more than 6.9° C/W must be used in this application to maintain the regulator junction temperature under 125° C.

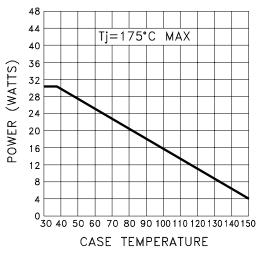

TYPICAL PERFORMANCE CURVES

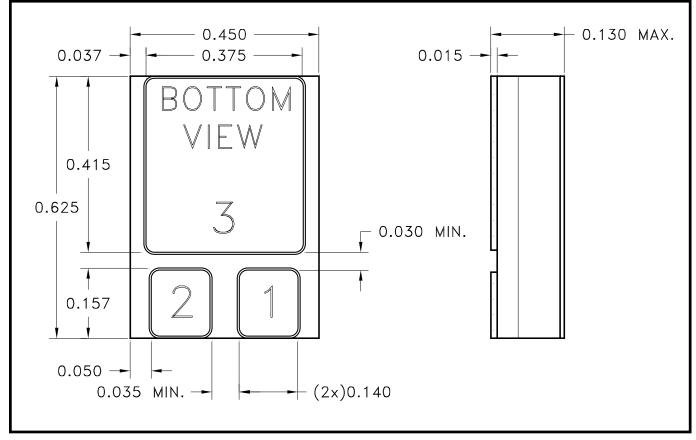


INTERNAL CURRENT LIMIT vs. VIN-VOUT

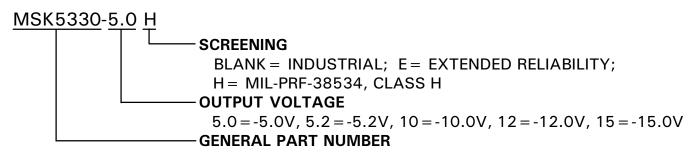


LOAD TRANSIENT RESPONSE




RIPPLE REJECTION vs. FREQUENCY

POWER DISSIPATION vs. TEMPERATURE



MECHANICAL SPECIFICATIONS

NOTE: ALL DIMENSIONS ARE ±0.010 INCHES UNLESS OTHERWISE LABELED.

ORDERING INFORMATION

The above example is a -5.0V, Military regulator.

M.S. Kennedy Corp. 4707 Dey Road, Liverpool, New York 13088 Phone (315) 701-6751 FAX (315) 701-6752 www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products.