

捷多邦,专业PCB打样工厂,24小时加急出货

Http://www.alcormicro.com/

Data Book

AU9720

USB to Serial Bridge Controller

Technical Reference Manual

Product Specification

Official Release

Revision 1.05W

Public

Apr 2005

Data Sheet Status

Objective encoification	This data sheet contains target or goal specifications for					
Objective specification	product development.					
Droliminary specification	This	data	sheet	contains	preliminary	data;
Preliminary specification	supplementary data may be published later.					
Product specification	This data sheet contains final product specifications.					

Revision History

Date	Revision	Description
Apr. 2005	1.05W	Removed the schematics. Please contact our sales if you need it.
/	400	
1		

Copyright Notice

Copyright 1997 - 2005 Alcor Micro Corp. All Rights Reserved.

Trademark Acknowledgements

The company and product names mentioned in this document may be the trademarks or registered trademarks of their manufacturers.

Disclaimer

Alcor Micro Corp. reserves the right to change this product without prior notice. Alcor Micro Corp. makes no warranty for the use of its products and bears no responsibility for any error that appear in this document. Specifications are subject to change without prior notice.

Contact Information:

Web site: http://www.alcormicro.com/

Taiwan

Alcor Micro Corp. 4F, No 200 Kang Chien Rd., Nei Hu, Taipei, Taiwan, R.O.C. Phone: 886-2-8751-1984 Fax: 886-2-2659-7723

Santa Clara Office

2901 Tasman Drive, Suite 206 Santa Clara, CA 95054 USA Phone: (408) 845-9300 Fax: (408) 845-9086

Los Angeles Office

9070 Rancho Park Court Rancho Cucamonga, CA.91730 USA Phone: (909) 483-9900 Fax: (909) 944-0464

Table of Contents

1	Introduction.	6
	1.1 Description	6
	1.2 Features	6
2	Application Block Diagram	7
3	Pin Assignment	8
4	System Architecture and Reference Design	10
	4.1 AU9720 Block Diagram	10
5	Electrical Characteristics	11
	5.1 Recommended Operating Conditions	11
	5.2 General DC Characteristics	11
	5.3 DC Electrical Characteristics for 3.3 volts operation	11
	5.4 Crystal Oscillator Circuit Setup for Characterization	12
	5.5 ESD Test Results	12
	5.6 Latch-Up Test Results	13
6	Mechanical Information	15

List of Figures

3.1 Pin Assignment Diagram	8
4.1 <u>AU9720 Block Diagram</u>	10
5.1 Crystal Oscillator Circuit Setup for Characterization Diagram	11
5.2 Latch-Up Test Results Diagram	13
6.1 <u>Mechanical Information Diagram</u>	15

List of Tables

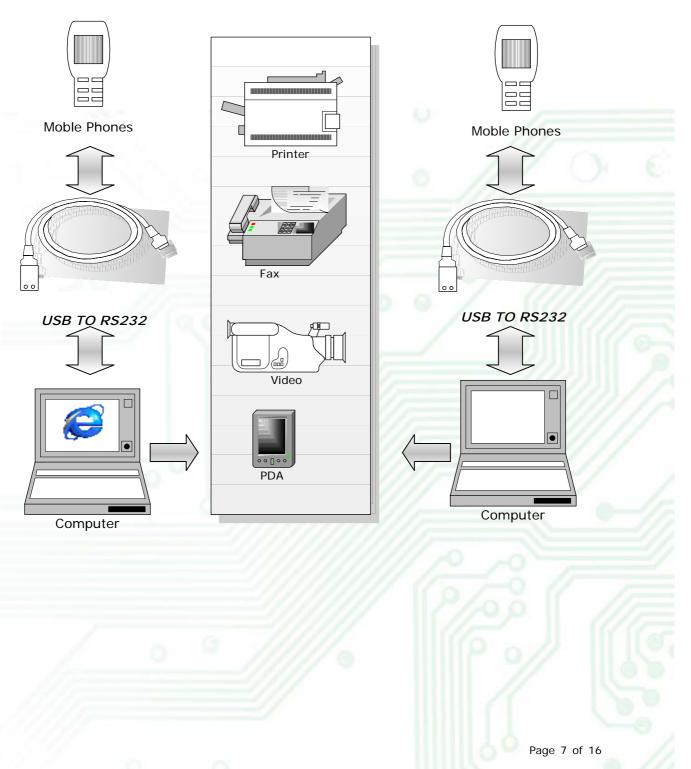
3.1	Pin Descriptions	9
5.1	Recommended Operating Conditions	11
5.2	General DC Characteristics	11
5.3	DC Electrical Characteristics for 3.3 volts operation	11
5.4	ESD Data	12
5.5	Latch-Up Data Table	13

1.0. Introduction

1.1. Description

The **AU9720** operates as a bridge between one USB port and one standard RS232 Serial port. The two large on-chip buffers have been pre-configured to accommodate the data flow between two different buses. The USB bulk-type data is adopted for maximum data transfer, which could be up to 6M bits/sec. Automatic handshake is supported at the Serial port. With these, a much higher baud rate can be achieved compared to the system uses legacy UART controller.

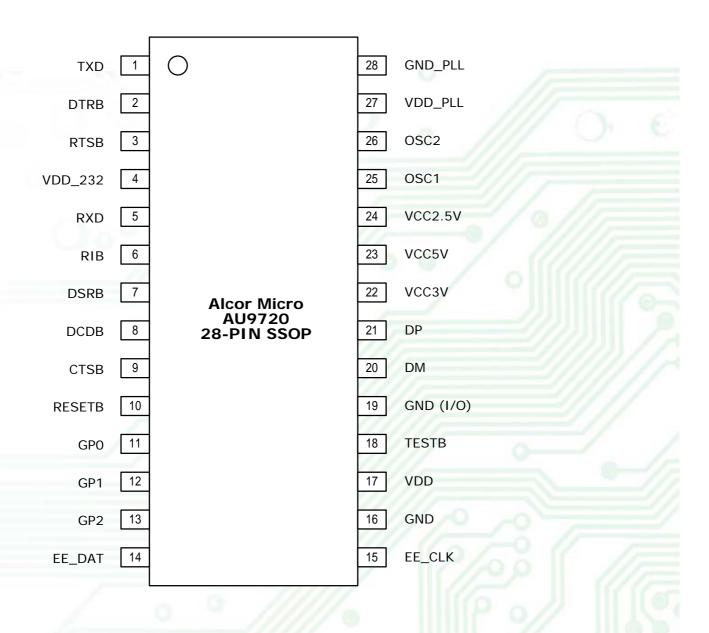
This device is also compliant with USB power management and remote wakeup scheme. Only minimum required power is consumed from the host during Suspend. By integrating all the function in a 28-SSOP package, this chip is suitable to be embedded inside a data cable. With such cables, users can connect between a PC host and any device with RS232 interface.


1.2. Features

- Support USB Specification v1.1 and USB CDC v1.1
- Support the RS232 Serial interface
- Support automatic handshake mode
- Support automatic hardware flow control with CTS/RTS
- Support automatic software flow control with XON/XOFF
- Support Remote wake-up and power management
- ♦ 384/128 bytes buffer each for upstream and downstream data flow
- Support default ROM or external EEPROM for device configuration
- On chip USB transceiver
- Crystal oscillator running at 12MHz
- Support Windows 98/SE, ME, 2000, XP, Windows CE3.0, CE.NET, Linux, and Mac OS
- ♦ 28 Pins SSOP Lead-Free package

2.0. Application Diagram

The following diagram shows several typical applications using AU9720. By connecting the USB connector to a desktop or notebook PC through AU9720, which is implemented as a bus-powered, a programmable speed could be gained to transfer data between PC and mobile phones with much higher baud rate speed than what normal UART devices could offer.



3.0. Pin Assignment

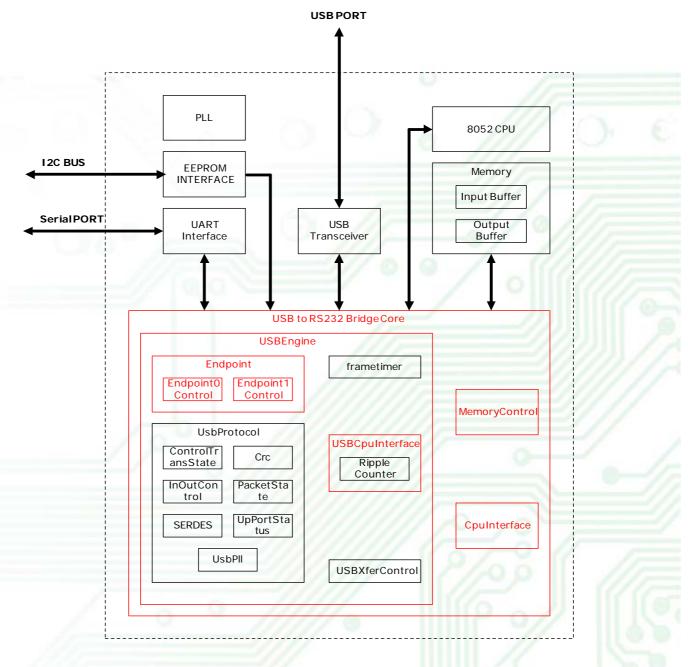
The AU9720 is packaged in 28pin SSOP Lead-Free. The following figure shows signal name for each pin and the table in the following page describes each pin in details.

Figure 3.1 Pin Assignment Diagram

安國國際科技股份有限公司 Alcor Micro Corp.

MICRO

Table 3.	1 Pin	Assignments
----------	-------	-------------


Pin#	Pin Name	1/0	Description		
1	TXD	0	Data Output to serial port		
2	DTRB	0	Low: Data Terminal Ready (serial port)		
3	RTSB	0	Low: Request To Send; (serial port)		
4	VDD_232	PWR	VDD for RS-232 (Input)		
5	RXD	I	Data Input from serial port		
6	RIB	I	Low: Ring Indicator (Serial Port)		
7	DSRB	I	Low: Data Set Ready (Serial port)		
8	DCDB	I	Low: Data Carrier Detect (serial port)		
9	CTSB	I	Low: Clear to send (serial port)		
10	RESETB	I	System reset		
11	GP0	1/0	Reserved for System Output use		
			High (connect with external 47K resistor) for		
12	GP1	1/0	USB Heavy Load (500mA); Low (connect with		
12		170	external 220K resistor) for USB Light Load		
			(100mA)		
13	GP2	1/0	Shutdown Transceiver under Suspend mode		
14	EE_DAT	1/0	External EEPROM data signal		
15	EE_CLK	1/0	External EEPROM clock		
16	GND	PWR	Ground		
17	VDD	PWR	Power input (3.3V)		
18	TESTB	I	Reserved		
19	GND (I/O)	PWR	I/O Ground		
20	DM	1/0	USB DMINUS signal		
21	DP	1/0	USB DPLUS Signal		
22	VCC3V	PWR	3.3v power output		
23	VCC5V	PWR	5v power input		
24	VCC2.5V	PWR	2.5v power output		
25	OSC1	I	Crystal oscillator input		
26	OSC2	0	Crystal oscillator output		
27	VDD_PLL	PWR	3.3V input power for PLL		
28	GND_PLL	PWR	Ground for PLL		

4.0. System Architecture and Reference Design

4.1. Block Diagram

Figure 4.1 AU9720 USB to Serial Bridge controller Block Diagram

5.0. Electrical Characteristics

5.1 Recommended Operating Conditions

	· · · · · · · · · · · · · · · · · · ·							
SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNITS			
V _{cc}	Power Supply	4.75	5	5.25	V			
V _{IN}	Input Voltage	0		V _{cc}	V			
T _{OPR}	Operating Temperature	0		85	°C			
T _{STG}	Storage Temperature	-40		125	°C			

Table	5.1	Recommended	Operating	Conditions
labic	0.1	Recommended	operating	oonantions

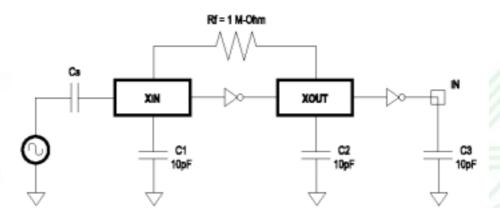
5.2 General DC Characteristics

Table 5.2 General DC Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	МАХ	UNITS
I_{IL}	Input low current	no pull-up or pull-down	-1		1	μA
I _{IH}	Input high current	no pull-up or pull-down	-1	/	1	μA
I _{oz}	Tri-state leakage current		-10		10	μA
C_{IN}	Input capacitance			5		ρF
Соит	Output capacitance			5		ρF
C_{BID}	Bi-directional buffer capacitance		1/7=	5		ρF

5.3 DC Electrical Characteristics for 3.3 volts operation

	Table 3.3 De Liectrical characteristics for 3.3 voits operation						
SYMBO	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	
V _{IL}	Input Low Voltage	CMOS			0.9	V	
VIH	Input Hight Voltage	CMOS	2.3			V	
V _{OL}	Output low voltage	I _{OL} =4mA, 16mA			0.4	V	
V _{OH}	Output high voltage	I _{OH} =4mA,16mA	2.4			V	
Р	Input Pull-up/down			10K/200K		KΩ	
Rı	resistance	$Vil=0_V$ or $Vih=V_{CC}$		10K/200K		K\$2	


Table 5.3 DC Electrical Characteristics for 3.3 volts operation

5.4 Crystal Oscillator Circuit Setup for Characterization

The following setup was used to measure the open loop voltage gain for crystal oscillator circuits. The feedback resistor serves to bias the circuit at its quiescent operating point and the AC coupling capacitor, Cs, is much larger than C1 and C2.

Figure 5.1 Crystal Oscillator Circuit Setup for Characterization

5.5 ESD Test Results

Test Description: ESD Testing was performed on a Zapmaster system using the Human-Body-Model (HBM) and Machine-Model (MM), according to MIL-STD 883 and EIAJ IC-121 respectively.

- Human-Body-Model stresses devices by sudden application of a high voltage supplied by a 100pF capacitor through 1.5k-ohm resistance.
- Machine-Model stresses devices by sudden application of a high voltage supplied by a 200pF capacitor through very low (0 ohm) resistance.

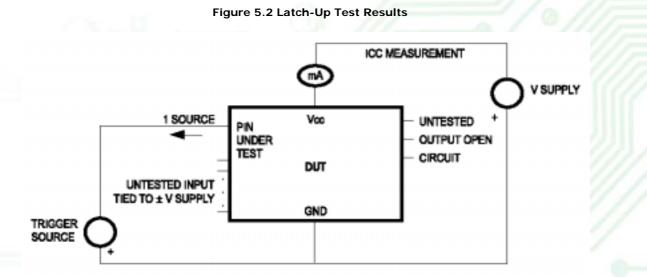
Test circuit & condition

- Zap Interval: 1 second
- Number of Zaps: 3 positive and 3 negative at room temperature
- Criteria: I-V Curve Tracing

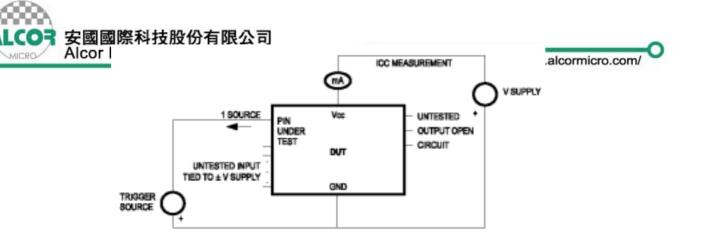
Model	Mode	s/s	Target	Results
HBM	Vdd, Vss, I/C	15	6000V	PASS
MM	Vdd, Vss, I/C	15	200V	PASS

Table 5.4 ESD Data

5.6 Latch-Up Test Results


Test Description: Latch-Up testing was performed at room ambience using an IMCS-4600 system which applies a stepped voltage to one pin per device with all other pins open except Vdd and Vss, to which 5Volts and ground were biased respectively. Testing was started at 5.0V (Positive) or 0V (Negative), and the DUT was biased for 0.5 seconds. If neither the PUT current supply nor the device current supply reached the predefined limit (DUT=00mA, Icc=100mA), then the voltage was increased by 0.1Volts and the pin was tested again.

This procedure was recommended by the JEDEC JC-40.2 CMOS Logic standardization committee.


Notes:

1. DUT: The device under test.

2. PUT: The pin under test.

Test Circuit: Positive Input/Output Overvoltage/Overcurrent

Test Circuit: Negative Input/Output Overvoltage/Overcurrent

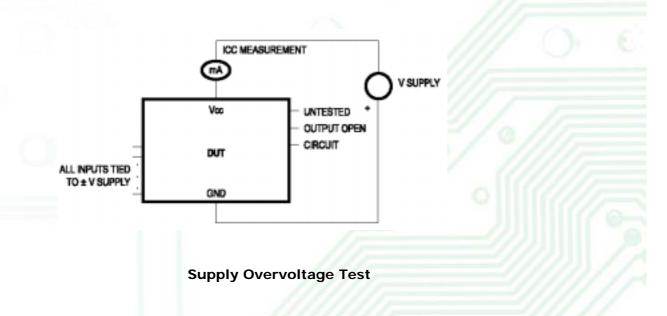


Table 5.5 Latch–Up Data

Mode		Voltage (V)/Current (mA)	S/S	Results
Voltage	+	11.0	5	Pass
	-	11.0	5	Pass
Current	+	200	5	Pass
	-	200	5	Pass
Vdd - Vxx		9.0	5	Pass

6.0 Mechanical Information

Figure 6.1 Mechanical Information Diagram

[MEMO]

Alcor Micro, Corp. designs, develops and markets highly integrated and advanced peripheral semiconductor, and software driver solutions for the personal computer and consumer electronics markets worldwide. We specialize in USB solutions and focus on emerging technology such as USB and IEEE 1394. The company offers a range of semiconductors including controllers for USB hub, integrated keyboard/USB hub and USB Flash memory card reader...etc. Alcor Micro, Corp. is based in Taipei, Taiwan, with sales offices in Taipei, Japan, Korea and California.

Alcor Micro is distinguished by its ability to provide innovative solutions for spec-driven products. Innovations like single chip solutions for traditional multiple chip products and on-board voltage regulators enable the company to provide cost-efficiency solutions for the computer peripheral device OEM customers worldwide.