

[查询B3896供应商](#)

[捷多邦，专业PCB打样工厂，24小时加急出货](#)

SAW Components

Data Sheet B3896

Data Sheet

EP

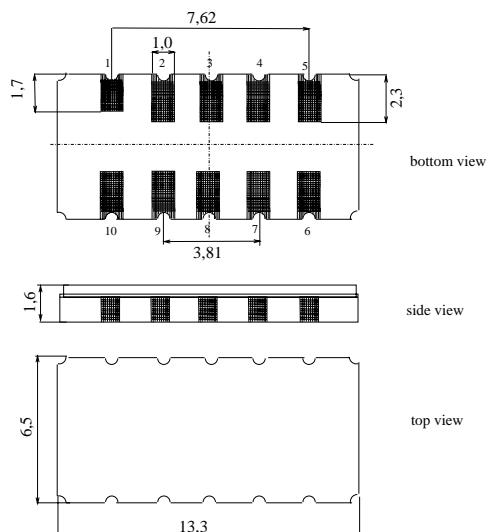
SAW Components

B3896

Low-Loss Filter

169,0 MHz

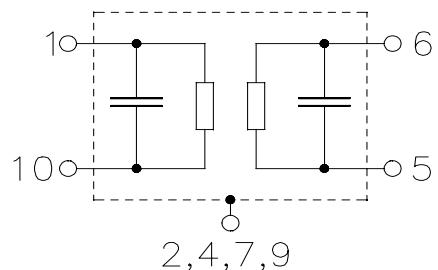
Data Sheet


Features

- Low-loss IF-filter for WCDMA base stations
- Usable bandwidth 4,0 MHz
- Ceramic SMD package

Terminals

- Gold plated


Ceramic package DCC12A

Dimensions in mm, approx. weight 0,4

Pin configuration

1, 10	Balanced Input
5, 6	Balanced Output
3, 8	Ground
2, 4, 7, 9	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B3896	B39171-B3896-H510	C61157-A7-A94	F61074-V8163-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

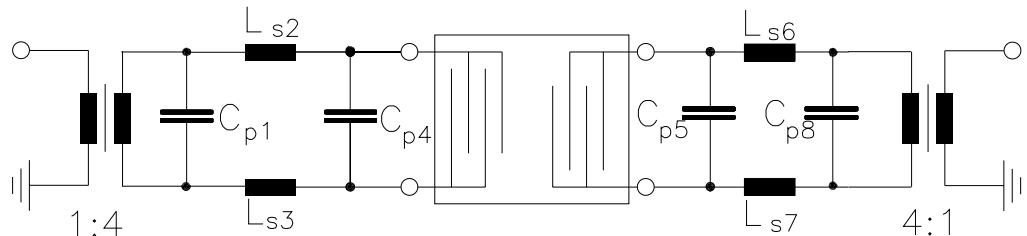
Operable temperature range	T_A	-40 / +85	°C	
Storage temperature range	T_{stg}	-40 / +85	°C	
DC voltage	V_{DC}	0	V	
Source power	P_s	10	dBm	average over 1 ms
Source power	P_s	20	dBm	peak < 1 μ s in passband

SAW Components**B3896****Low-Loss Filter****169,0 MHz****Data Sheet****Characteristics**

Operating temperature range:	$T_A = -40 \dots 85^\circ\text{C}$
Terminating source impedance:	$Z_S = 200 \Omega$ balanced and matching network
Terminating load impedance:	$Z_L = 200 \Omega$ balanced and matching network
Group delay aperture:	150 kHz

		min.	typ.	max.	
Nominal frequency	f_N	—	169,0	—	MHz
Minimum insertion attenuation	α_{\min}	—	8,5	10,5	dB
Amplitude ripple (p-p)	$\Delta\alpha$	—	0,5	0,9	dB
	$f_N \pm 2,0 \text{ MHz}$				
Group delay ripple (p-p)	$\Delta\tau$	—	100	150	ns
	$f_N \pm 2,0 \text{ MHz}$				
Absolute group delay	τ	1150	1175	1200	ns
	mean value within $f_N \pm 2,0 \text{ MHz}$				
VSWR¹⁾		—	1,6:1	2,2:1	
	$f_N \pm 2,0 \text{ MHz}$				
Relative attenuation (relative to α_{\min})	α_{rel}				
	$f_N \pm 3,0 \text{ MHz} \dots f_N \pm 3,5 \text{ MHz}$	9	14	—	dB
	$f_N \pm 3,5 \text{ MHz} \dots f_N \pm 5,0 \text{ MHz}$	23	30	—	dB
	$f_N - 11,0 \text{ MHz} \dots f_N - 5,0 \text{ MHz}$	44	48	—	dB
	22 MHz ... 158,0 MHz	50	55	—	dB
	$f_N + 5,0 \text{ MHz} \dots f_N + 13,0 \text{ MHz}$	40	44	—	dB
	$f_N + 13,0 \text{ MHz} \dots f_N + 23,0 \text{ MHz}$	47	50	—	dB
	192,0 MHz ... 500 MHz	50	60	—	dB
	500,0 MHz ... 2,5 GHz	40	50	—	dB
Adjacent channel selectivity²⁾	ACS				
	first adjacent channel	23	30	—	dB
	second adjacent channel	49	51	—	dB

1) VSWR only guaranteed for the temperature range $-25 \dots 85^\circ\text{C}$


2) Adjacent channels centered at 169 MHz+ $k \cdot 5 \text{ MHz}$ ($k = -2, -1, 1, 2$), Supression of HPSK signal with 3,84 MHz bandwidth

SAW Components**B3896****Low-Loss Filter****169,0 MHz****Data Sheet**

Impedance at f_N (without matching) Input: $Z_{IN} = R_{IN} \parallel C_{IN}$ Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$	—	0,23 \parallel 19	—	$k\Omega \parallel pF$
—	—	1,14 \parallel 5,6	—	$k\Omega \parallel pF$
Temperature coefficient of frequency	TC_f	—	-18	— ppm/K

Matching network to 200 Ω input balanced and 200 Ω output balanced:4:1 transformer is only required for measurement in a 50 Ω environment

(Element values depend upon PCB layout)

$$C_{p1} = 22 \text{ pF}$$

$$L_{s2} = 27 \text{ nH}$$

$$L_{s3} = 27 \text{ nH}$$

$$C_{p4} = 5,6 \text{ pF}$$

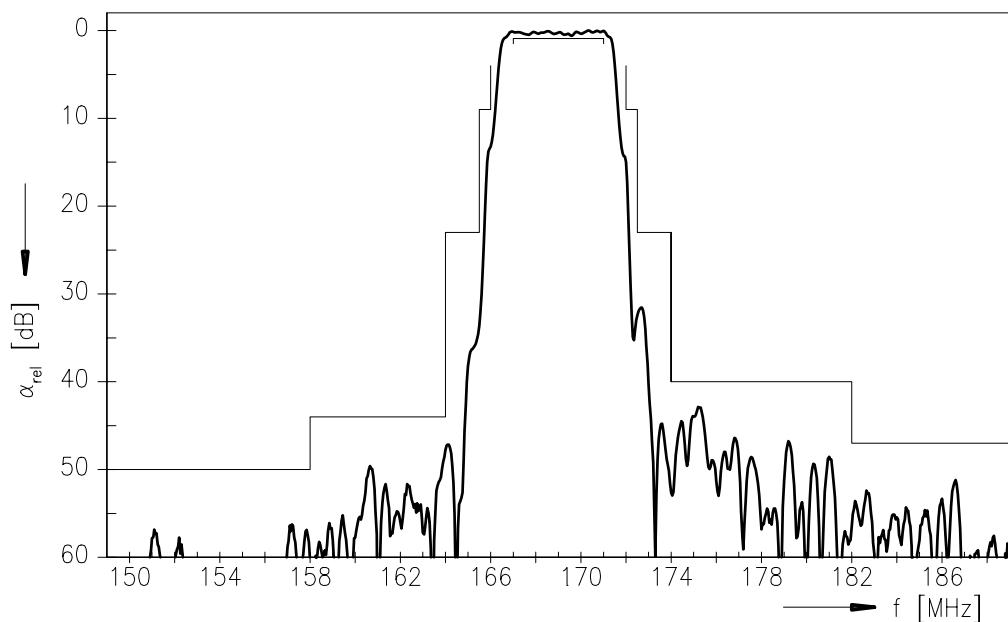
$$C_{p5} = 1,2 \text{ pF}$$

$$L_{s6} = 82 \text{ nH}$$

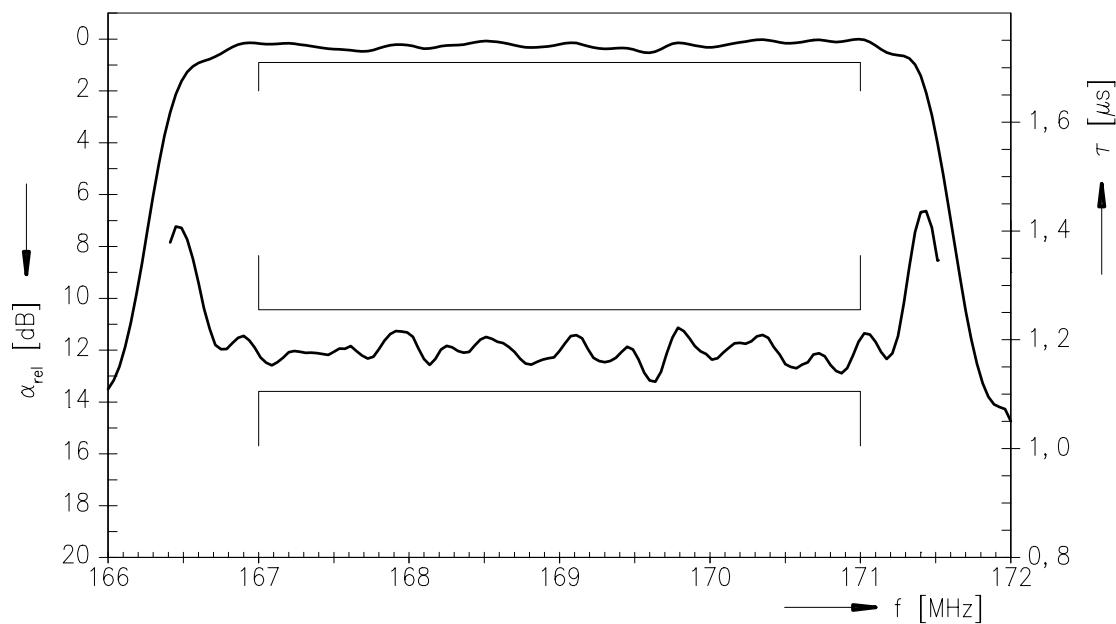
$$L_{s7} = 82 \text{ nH}$$

$$C_{p8} = 15 \text{ pF}$$

SAW Components


B3896

Low-Loss Filter


169,0 MHz

Data Sheet

Normalized transfer function

Normalized transfer function (pass band)

SAW Components	B3896
Low-Loss Filter	169,0 MHz

Data Sheet

Published by EPCOS AG
Surface Acoustic Wave Components Division, SAW MC
P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2003. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.