捷多邦,专业PCB打样工厂,24小时加急出货

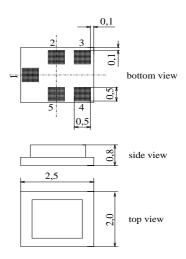
查询B39881-B7701-K910供应商

SAW Components

EPCOS

Data Sheet B7701, Pb Free

Data Sheet

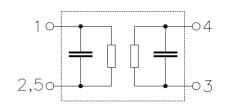

â
EPCOS

SAW Components		B7701
Low-Loss Filter for M	obile Communication	881,5 MHz
Data Sheet	SMD	

Features

- Low-loss RF filter for mobile telephone AMPS system, receive path
- Low amplitude ripple
- Usable passband 25 MHz
- Unbalanced to balanced operation
- Impedance transformation from 50 Ω to 200 Ω
- Suitable for GPRS class 1 to 12
- Package for Surface Mounted Technology (SMT)
- Pb-Free

Dimensions in mm, approx. weight 0,015g


Terminals

Pin configuration

1	Input

3, 4	Balanced output
•, •	

2, 5 Ground, to be grounded

Туре	Ordering code	Marking and Package according to	Packing according to
B7701	B39881-B7701-K910	C61157-A7-A139	F61074-V8189-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	- 30 / + 85	°C	
Storage temperature range	T _{stg}	– 40 / + 85	°C	
DC voltage	V _{DC}	5	V	
ESD voltage	V [*] _{ESD}	100*	V	Machine Model, 10 pulses
Input power at	PIN	15	dBm	peak power of GSM signal,
GSM850, GSM900				duty cycle 4:8
GSM1800 and GSM1900				
Tx bands				

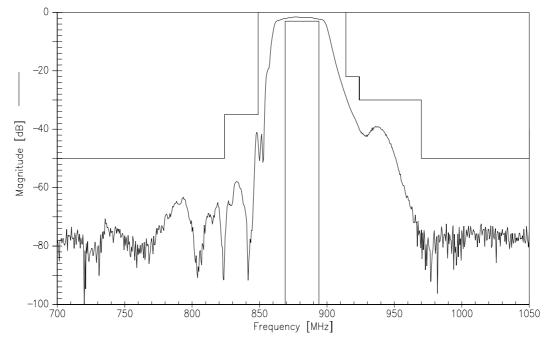
2

* - acc. to JESD22-A115A (Machine Model), 10 negative & 10 positive pulses

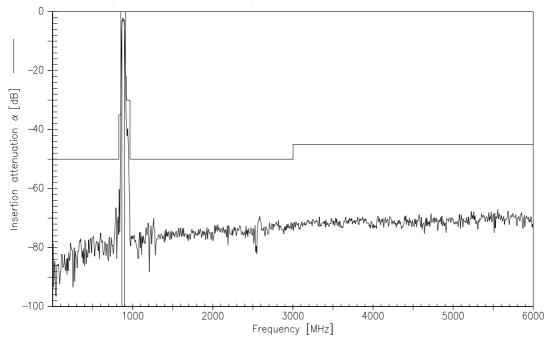
Â
ÉPCOS

SAW Components						B7701
Low-Loss Filter for Mobile Communication						,5 MHz
Data Sheet	SM					
Characteristics						
Operating temperature range: Terminating source impedance: Terminating load impedance:	Z _S	= +25 °C = 50 Ω = 200 Ω				
		1	min.	typ.	max.	
Center frequency		f _C	_	881,5		MHz
Maximum insertion attenuation		α_{max}				
869,0 894	4,0 MHz		_	2,3	2,6	dB
Amplitude ripple (p-p)		Δα			10	
869,0 894	1,0 MHz		_	0,6	1,0	dB
VSWR 869,0 894	1,0 MHz		_	1,8	2,0	
				1,0	2,0	
Output phase balance $(\phi(S_{31})-\phi(S_{32})-\phi($			10.0	0	40.0	
869,0 894	4,0 MHz		-10,0	0	10,0	degree
Output amplitude balance (S_{31}/S_{32})			4.0		10	
869,0 894	4,0 MHz		-1,0	0	1,0	dB
Attenuation		α				
0,0 824			50,0	60,0	-	dB
824,0 849			35,0	40,0	-	dB
914,0 924			25,0	28,0	-	dB
924,0 970			30,0	36,0	-	dB
970,03000 3000,06000			50,0 45,0	70,0 60,0	_	dB dB
Tx band suppression		α				
824,0 849	9,0 MHz		35,0	40,0		dB

<u> </u>
-
EPCOS


SAW Components						B7701
Low-Loss Filter for Mobile Commun	ication	1			881	,5 MHz
Data Sheet	=M					
Characteristics						
Operating temperature range: Terminating source impedance: Terminating load impedance:	<i>Z</i> _S =	= -30 tc = 50 Ω = 200 Ω	o +85 °C 2			
			min.	typ.	max.	
Center frequency		f _C	—	881,5	—	MHz
Maximum insertion attenuation		α _{max}				
869,0 894,0	MHz		—	2,6	3,0	dB
Amplitude ripple (p-p)		Δα				
869,0 894,0	MHz		—	1,0	1,4	dB
VSWR						
869,0 894,0	MHz		_	1,8	2,0	
Output phase balance ($\phi(S_{31})-\phi(S_{32})+180$						
869,0 894,0	MHz		-10,0	0	10,0	degree
Output amplitude balance ($ S_{31}/S_{32} $)						
869,0 894,0	MHz		-1,0	0	1,0	dB
Attenuation		α				
0,0 824,0	MHz		50,0	60,0	_	dB
824,0 849,0	MHz		35,0	40,0	—	dB
914,0 924,0	MHz		22,0	26,0	—	dB
924,0 970,0	MHz		30,0	36,0	—	dB
970,03000,0	MHz		50,0	70,0	—	dB
3000,06000,0	MHz		45,0	60,0	—	dB
Tx band suppression		α				
824,0 849,0	MHz		35,0	40,0	—	dB

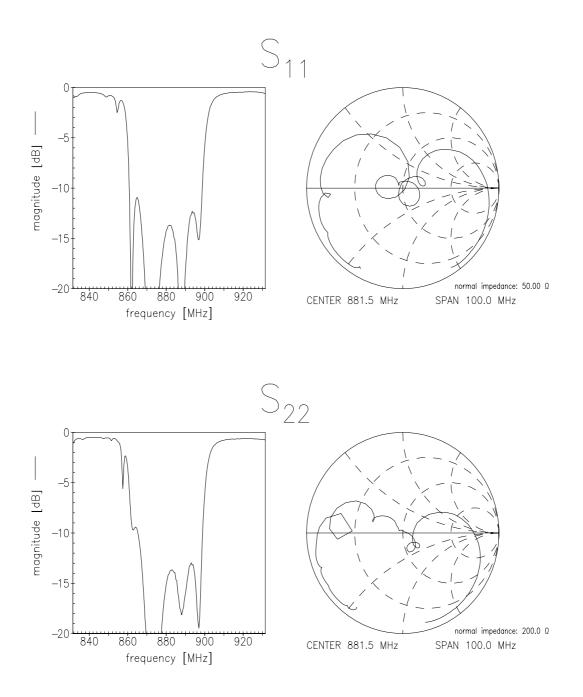
EPCOS


SAW Components						B7701
Low-Loss Filter for Mobile Communication 881,5 MH:						
Data Sheet	SM					
Characteristics						
Operating temperature range: Terminating source impedance: Terminating load impedance:	<i>Z</i> _S =	= -40 to + = 50 Ω = 200 Ω	+85 °C			
			min.	typ.	max.	
Center frequency	1	f _C	_	881,5		MHz
Maximum insertion attenuation	(α _{max}				
869,0 894,0	MHz		—	2,6	3,1	dB
Amplitude ripple (p-p)	2	Δα				
869,0 894,0	MHz		—	1,0	1,5	dB
VSWR						
869,0 894,0	MHz			1,8	2,2	
Output phase balance ($\phi(S_{31})-\phi(S_{32})+180$				_		
869,0 894,0	MHz		-10,0	0	10,0	degree
Output amplitude balance ($ S_{31}/S_{32} $)						
869,0 894,0	MHz		-1,0	0	1,0	dB
Attenuation	(α				
0,0 824,0	MHz		50,0	60,0	—	dB
824,0 849,0	MHz		35,0	40,0	—	dB
914,0 924,0	MHz		22,0	26,0	—	dB
924,0 970,0	MHz		30,0	36,0	_	dB
970,03000,0	MHz		50,0	70,0	—	dB
3000,06000,0	MHz		45,0	60,0	—	dB
Tx band suppression	(α				
824,0 849,0	MHz		35,0	40,0	—	dB

EPCOS				
SAW Components		B7701		
Low-Loss Filter for Mobile Communication		881,5 MHz		
Data Sheet	=md			

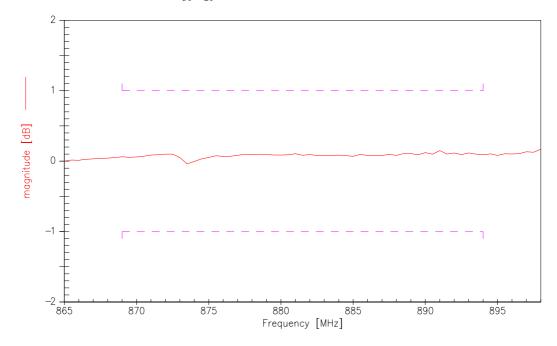
Transfer function (narrowband measurement)

Transfer function (wideband measurement)

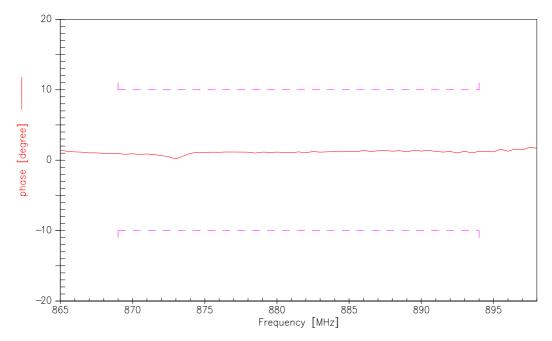


Jan 24, 2005

â
-
EPCOS


SAW Components Low-Loss Filter for Mobile Communication		B7701 881,5 MHz

Reflection functions (measurement)



EPCOS				
SAW Components		B7701		
Low-Loss Filter for Mobile Communication		881,5 MHz		
Data Sheet				

 $\textbf{Output amplitude balance} ~(|\textbf{S}_{31}/\textbf{S}_{21}|; \textit{measurement})$

Output phase balance $(\phi(S_{31})-\phi(S_{21})+180^{\circ}; \text{ measurement})$

8

Jan 24, 2005

EPCOS				
SAW Components		B7701		
Low-Loss Filter for Mobile Communication		881,5 MHz		
Data Sheet	SMD			

2

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC PD P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.