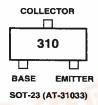

Low Current, High Performance NPN Silicon Bipolar Transistor


Technical Data

Features

- High Performance Bipolar Transistor Optimized for Low Current, Low Voltage Operation
- 900 MHz Performance:
 AT-31011: 0.9 dB NF, 13 dB G_A
 AT-31033: 0.9 dB NF, 11 dB G_A
- Characterized for End-Of-Life Battery Use (2.7 V)
- SOT-143 SMT Plastic Package
- Tape-And-Reel Packaging Option Available^[1]

Outline Drawing

Note:

 Refer to "Tape-and-Reel Packaging for Semiconductor Devices"

Description

Hewlett-Packard's AT-31011 and AT-31033 are high performance NPN bipolar transistors that have been optimized for operation at low voltages, making them ideal for use in battery powered applications in wireless markets. The AT-31033 uses the 3 lead SOT-23, while the AT-31011 places the same die in the higher performance 4 lead SOT-143. Both packages are industry standards compatible with high volume surface mount assembly techniques.

The 3.2 micron emitter-to-emitter pitch and reduced parasitic design of these transistors yields extremely high performance products that can perform a multiplicity of tasks. The 10 emitter finger interdigitated geometry yields an extremely fast transistor with low operating currents and reasonable impedances.

Optimized performance at 2.7 V makes these devices ideal for use in 900 MHz, 1.9 GHz, and 2.4 GHz

AT-31011 AT-31033

battery operated systems as an LNA, gain stage, buffer, oscillator, or active mixer. Applications include cellular and PCS handsets as well as Industrial-Scientific-Medical systems. Typical amplifier designs at 900 MHz yield 1.3 dB noise figures with 11 dB or more associated gain at a 2.7 V, 1 mA bias. Moderate output power capability (+9 dBm P_{1dB}) coupled with an excellent noise figure yields high dynamic range for a microcurrent device. High gain capability at 1 V, 1 mA makes these devices a good fit for 900 MHz pager applications.

The AT-3 series bipolar transistors are fabricated using an optimized version of Hewlett-Packard's 10 GHz f_T, 30 GHz f_{max} Self-Aligned-Transistor (SAT) process. The die are nitride passivated for surface protection. Excellent device uniformity, performance and reliability are produced by the use of ion-implantation, self-alignment techniques, and gold metalization in the fabrication of these devices.

AT-31011, AT-31033 Absolute Maximum Ratings

	•		
Symbol	Parameter	Units	Absolute Maximum ^[1]
V _{EBO}	Emitter-Base Voltage	v	1.5
V_{CBO}	Collector-Base Voltage	v	11
V_{CEO}	Collector-Emitter Voltage	v	5.5
$I_{\rm C}$	Collector Current	mA	16
P_{T}	Power Dissipation ^[2,3]	mW	150
$T_{\rm j}$	Junction Temperature	$^{\circ}\mathrm{C}$	150
T_{STG}	Storage Temperature	°C	-65 to 150

Thermal Resistance ^[2] :
$\theta_{\rm jc} = 550^{\circ}{ m C/W}$

Notes:

- 1. Operation of this device above any one of these parameters may cause permanent damage.
- 2. T_{Mounting Surface} = 25°C.
- 3. Derate at 1.82 mW/°C for $T_C > 67.5$ °C.

Electrical Specifications, $T_A = 25$ °C

			AT-31011			AT-31033			
Symbol	Parameters and Test Co	Units	Min	Тур	Max	Min	Тур	Max	
NF	Noise Figure $V_{CE} = 2.7 \text{ V}, I_{C} = 1 \text{ mA}$	f = 0.9 GHz	dB		0.9[1]	1.2 ^[1]		$0.9^{[2]}$	$1.2^{[2]}$
G_{A}	Associated Gain $V_{CE} = 2.7 \text{ V}, I_C = 1 \text{ mA}$	f = 0.9 GHz	dB	11 ^[1]	13 ^[1]		$9^{[2]}$	11 ^[2]	
h_{FE}	Forward Current Transfer Ratio	$V_{CE} = 2.7 \text{ V}$ $I_{C} = 1 \text{ mA}$	-	70		300	70		300
I_{CBO}	Collector Cutoff Current	$V_{CB} = 3 \text{ V}$	μA		0.05	0.2		0.05	0.2
I_{EBO}	Emitter Cutoff Current	$V_{EB} = 1 \text{ V}$	μA		0.1	1.5		0.1	1.5

- 1. Test circuit B, Figure 1. Numbers reflect device performance de-embedded from circuit losses. Input loss = 0.4~dB; output loss = 0.4~dB.
- 2. Test circuit A, Figure 1. Numbers reflect device performance de-embedded from circuit losses. Input loss = 0.4 dB; output loss = 0.4 dB.

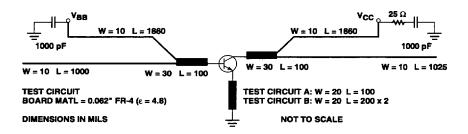


Figure 1. Test Circuit for Noise Figure and Associated Gain. This Circuit is a Compromise Match Between Best Noise Figure, Best Gain, Stability, a Practical, Synthesizable Match, and a Circuit Capable of Matching Both the AT-305 and AT-310 Geometries.

Characterization Information, $T_A = 25^{\circ} C$

				AT-31011	AT-31033	
Symbol	Parameters and Test Cond	litions	Units	Тур	Тур	
P_{1dB}	Power at 1 dB Gain Compression (opt tunin V_{CE} = 2.7 V, I_{C} = 10 mA	f = 0.9 GHz	dBm	9	9	
G_{1dB}	Gain at 1 dB Gain Compression (opt tuning $V_{CE} = 2.7$ V, $I_{C} = 10$ mA	f = 0.9 GHz	dB	15	13	
IP_3	Output Third Order Intercept Point, $V_{CE} = 2.7 \text{ V}, I_C = 10 \text{ mA (opt tuning)}$	f = 0.9 GHz	dBm	20	20	
$ S_{21} _E^2$	Gain in 50 Ω System; V_{CE} = 2.7 V, I_{C} = 1 mA	f = 0.9 GHz	dB	10	9	
C _{CB}	Collector-Base Capacitance	$V_{CB} = 3V$, $f = 1$ MHz	pF	0.04	0.04	

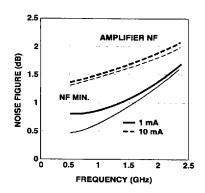


Figure 2. AT-31011 and AT-31033 Minimum Noise Figure and Amplifier NF $^{(1)}$ vs. Frequency and Current at $V_{\rm CE}=2.7~\rm V.$

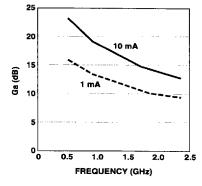


Figure 3. AT-31011 Associated Gain at Optimum Noise Match vs. Frequency and Current at $V_{\rm CE}=2.7~\rm V.$

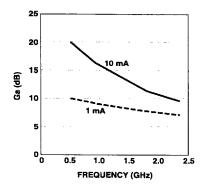


Figure 4. AT-31033 Associated Gain at Optimum Noise Match vs. Frequency and Current at $V_{\rm CE} = 2.7~\rm V.$

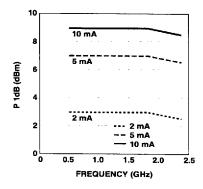


Figure 5. AT-31011 and AT-31033 Power at 1 dB Gain Compression vs. Frequency and Current at $V_{\rm CE}$ = 2.7 V.

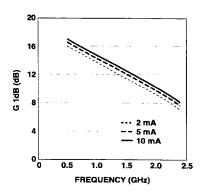


Figure 6. AT-31011 1 dB Compressed Gain vs. Frequency and Current at $V_{\rm CE}=2.7\,\rm V.$

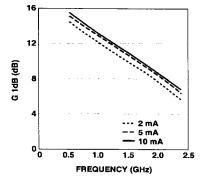


Figure 7. AT-31033 1 dB Compressed Gain vs. Frequency and Current at $V_{\rm CE}$ = 2.7 V.

Note:

1. Amplifier NF represents the noise figure which can be expected in a real circuit representing reasonable reflection coefficients and including circuit losses.

AT-31011, AT-31033 Typical Performance

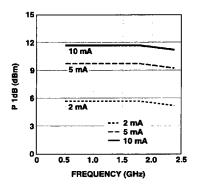


Figure 8. AT-31011 and AT-31033 Power at 1 dB Gain Compression vs. Frequency and Current at $V_{\rm CE}=5~{\rm V}.$

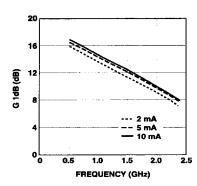


Figure 9. AT-31011 1 dB Compressed Gain vs. Frequency and Current at $V_{\rm CE}$ = 5 V.

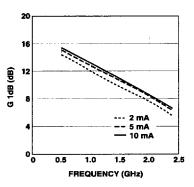


Figure 10. AT-31033 1 dB Compressed Gain vs. Frequency and Current at $V_{\rm CE}$ = 5 V.

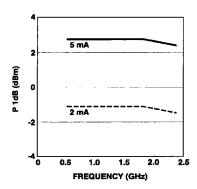


Figure 11. AT-31011 and AT-31033 Power at 1 dB Gain Compression vs. Frequency and Current at $V_{CE}=1~V$.

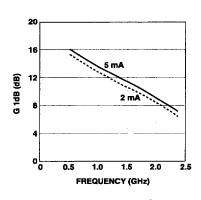


Figure 12. AT-31011 1 dB Compressed Gain vs. Frequency and Current at $V_{\rm CE}$ = 1 V.

Figure 13. AT-31033 1 dB Compressed Gain vs. Frequency and Current at $V_{\rm CE}$ = 1 V.

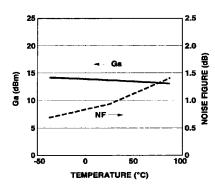


Figure 14, AT-31011 Noise Figure and Associated Gain at $V_{\rm CE}=2.7$ V, $I_{\rm C}=1$ mA vs. Temperature in Test Circuit, Figure 1. (Circuit Losses De-embedded)

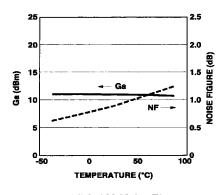


Figure 15. AT-31033 Noise Figure and Associated Gain at $V_{\rm CE}$ = 2.7 V, $I_{\rm C}$ = 1 mA vs. Temperature in Test Circuit, Figure 1. (Circuit Losses De-embedded)

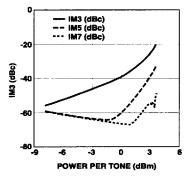


Figure 16. AT-31011 and AT-31033 Intermodulation Products vs. Output Power at $V_{\rm CE}$ = 2.7 V, $I_{\rm C}$ = 10 mA, 900 MHz with Optimal Tuning.

AT-31011 Typical Scattering Parameters, V_{CE} = 1 V, I_{C} = 1 mA, Common Emitter, Z_{O} = 50 Ω

Freq.		311		S ₂₁		\mathbf{S}_{12} \mathbf{S}_{22}		22		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	0.95	-8	11.12	3.60	174	-37.91	0.01	85	0.999	-3
0.5	0.92	-34	10.58	3.38	150	-24.67	0.06	68	0.94	-15
0.9	0.81	-60	9.74	3.07	130	-20.67	0.09	53	0.89	-25
1.0	0.79	-66	9.33	2.93	125	-20.03	0.10	50	0.88	-27
1.5	0.66	-94	8.02	2.52	104	-18.34	0.12	36	0.80	-36
1.8	0.60	-110	7.18	2.28	93	-17.95	0.13	30	0.76	-40
2.0	0.57	-119	6.76	2.18	87	-17.73	0.13	27	0.74	-42
2.4	0.51	-139	5.56	1.90	74	-17.69	0.13	22	0.71	-46
3.0	0.45	-167	4.22	1.63	57	-17.95	0.13	19	0.67	-51
4.0	0.45	153	2.30	1.30	36	-18.33	0.12	22	0.64	-62
5.0	0.49	120	0.73	1.09	17	-17.33	0.14	32	0.62	-72

Common Emitter, $Z_O = 50 \Omega$, 1 V, $I_C = 1 \text{ mA}$

Freq	$\mathbf{F_{min}^{[1]}}$]	$\mathbf{R_n}$	
GHz	ďВ	Mag	Ang	n
$0.5^{[2]}$	0.5	0.90	13	0.85
0.9	0.6	0.85	29	0.73
1.8	1.1	0.68	67	0.46
2.4	1.6	0.55	98	0.28

1. Matching constraints may make F_{min} values associated with high $|\Gamma_{OPT}|$ values unachievable in physical circuits. See Figure 2 for expected performance.

2. 0.5 GHz noise parameter values are extrapolated, not measured.



Figure 17. AT-31011 Gains vs. Frequency at $V_{CE} = 1 \text{ V}$, $I_{C} = 1 \text{ mA}$.

AT-31033 Typical Scattering Parameters, V_{CE} = 1 V, I_{C} = 1 mA, Common Emitter, Z_{O} = 50 Ω

Freq.	s	511		S ₂₁			S ₁₂		s	22
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	0.94	-7	11.16	3.61	173	-35.95	0.02	85	0.999	-3
0.5	0.87	-34	10.37	3.30	144	-22.84	0.07	68	0.92	-17
0.9	0.70	-58	9.17	2.87	121	-19.06	0.11	56	0.85	-27
1.0	0.66	-64	8.69	2.72	115	-18.49	0.12	53	0.83	-29
1.5	0.46	-90	7.11	2.27	92	-16.94	0.14	45	0.74	-37
1.8	0.36	-106	6.16	2.03	81	-16.40	0.15	43	0.70	-40
2.0	0.31	-117	5.66	1.92	74	-16.06	0.16	42	0.68	-42
2.4	0.22	-143	4.48	1.67	62	-15.50	0.17	$\overline{42}$	0.66	-45
3.0	0.16	166	3.19	1.44	46	-14.34	0.19	44	0.63	-50
4.0	0.23	101	1.39	1.17	25	-11.85	0.26	46	0.60	-62
5.0	0.33	67	0.05	1.01	9	-9.11	0.35	41	0.56	-77

AT-31033 Typical Noise Parameters,

Common Emitter, $Z_0 = 50 \Omega$, 1 V, $I_C = 1 \text{ mA}$

Freq	$\mathbf{F_{min}^{[1]}}$	$\Gamma_{\mathbf{OPT}}$		$\mathbf{R}_{\mathbf{n}}$
GHz	dB	Mag	Ang	n
$0.5^{[2]}$	0.5	0.90	12	0.70
0.9	0.6	0.82	28	0.60
1.8	1.1	0.57	68	0.38
2.4	1.6	0.41	100	0.22

- 1. Matching constraints may make F_{min} values associated with high $|\Gamma_{OPT}|$ values unachievable in physical circuits. See Figure 2 for expected performance.
- $2.\ 0.5\ \mathrm{GHz}$ noise parameter values are extrapolated, not measured.

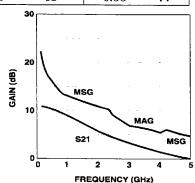


Figure 18. AT-31033 Gains vs. Frequency at V_{CE} = 1 V, I_{C} = 1 mA.

AT-31011 Typical Scattering Parameters, V_{CE} = 2.7 V, I_{C} = 1 mA, Common Emitter, Z_{O} = 50 Ω

Freq.	S	111		S ₂₁			S_{12}		S	22
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	0.96	-7	11.11	3.59	174	-39.92	0.01	86	0.999	-2
0.5	0.93	-32	10.66	3.41	152	-26.43	0.05	69	0.95	-13
0.9	0.83	-56	9.90	3.13	132	-22.32	0.08	55	0.91	-22
1.0	0.81	-61	9.53	2.99	128	-21.66	0.08	53	0.90	-24
1.5	0.68	-89	8.32	2.61	107	-19.90	0.10	40	0.84	-32
1.8	0.62	-104	7.52	2.38	96	-19.46	0.11	34	0.80	-36
2.0	0.58	-113	7.15	2.28	90	-19.24	0.11	31	0.78	-38
2.4	0.52	-133	5.98	1.99	77	-19.15	0.11	27	0.75	-42
3.0	0.45	-160	4.65	1.71	61	-19.37	0.11	25	0.72	-46
4.0	0.43	158	2.75	1.37	39	-19.60	0.10	29	0.69	-56
5.0	0.46	123	1.16	1.14	20	-18.16	0.12	41	0.68	-66

Common Emitter, $Z_O = 50 \Omega$, 2.7 V, $I_C = 1 \text{ mA}$

Freq	$\mathbf{F}_{\min}^{[1]}$	$\mathbf{F}_{\min}^{[1]}$ Γ_{OPT}			
GHz	dB	Mag	Ang	$\mathbf{R_n}$	
0.5[2]	0.5	0.92	13	0.85	
0.9	0.6	0.85	29	0.73	
1.8	1.1	0.68	67	0.46	
2.4	1.6	0.55	98	0.28	

Notes:

- 1. Matching constraints may make F_{min} values associated with high $|\Gamma_{OPT}|$ values unachievable in physical circuits. See Figure 2 for expected performance.
- 2. 0.5 GHz noise parameter values are extrapolated, not measured.



Figure 19. AT-31011 Gains vs. Frequency at $V_{\rm CE}$ = 2.7 V, $I_{\rm C}$ = 1 mA.

AT-31033 Typical Scattering Parameters, V_{CE} = 2.7 V, I_{C} = 1 mA, Common Emitter, I_{C} = 50 I_{C}

Freq.	S	11		S ₂₁			\mathbf{S}_{12}		s	22
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	0.94	-7	11.07	3.58	173	-37.44	0.01	86	0.999	-3
0.5	0.89	-32	10.35	3.29	146	-24.11	0.06	70	0.94	-15
0.9	0.72	-54	9.27	2.91	123	-20.27	0.10	58	0.87	-25
1.0	0.69	-59	8.80	2.76	118	-19.65	0.10	56	0.86	-26
1.5	0.48	-83	7.32	2.32	95	-18.01	0.13	48	0.78	-33
1.8	0.38	-97	6.39	2.09	84	-17.43	0.13	46	0.74	-36
2.0	0.33	-107	5.91	1.97	77	-17.07	0.14	45	0.72	-38
2.4	0.23	-130	4.73	1.72	65	-16.46	0.15	46	0.70	-41
3.0	0.14	-178	3.43	1.48	49	-15.25	0.17	48	0.67	-4 6
4.0	0.19	103	1.62	1.21	28	-12.62	0.23	51	0.65	-57
5.0	0.30	67	0.25	1.03	12	-9.72	0.33	47	0.63	-71

AT-31033 Typical Noise Parameters,

Common Emitter, $Z_0 = 50 \Omega$, 2.7 V, $I_C = 1 \text{ mA}$

Freq	F(1)	1	R _n	
GHz	F _{min} ^[1] dB	Mag	Ang	n
0.5[2]	0.5	0.90	12	0.70
0.9	0.6	0.82	28	0.60
1.8	1.1	0.57	68	0.38
2.4	1.6	0.41	100	0.22

- 1. Matching constraints may make F_{min} values associated with high $|\Gamma_{OPT}|$ values unachievable in physical circuits. See Figure 2 for expected performance.
- 2. 0.5 GHz noise parameter values are extrapolated, not measured.

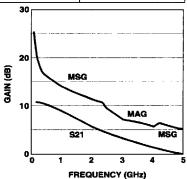


Figure 20. AT-31033 Gains vs. Frequency at V_{CE} = 2.7 V, I_{C} = 1 mA.

AT-31011 Typical Scattering Parameters,	$V_{CE} = 2.7 \text{ V}, I_{C} = 10 \text{ mA}, \text{ Common Emitter}, Z_{\Omega} = 50 \Omega$
---	---

			1			T			. , . 0	
Freq.		311		$\mathbf{S_{21}}$			$\mathbf{S_{12}}$		l s	22
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	0.74	-23	27.42	23.49	161	-41.00	0.01	77	0.95	-9
0.5	0.46	-85	22.65	13.57	116	-30.64	0.03	59	0.68	-24
0.9	0.32	-121	18.73	8.64	97	-27.55	0.04	59	0.59	-27
1.0	0.30	-128	17.91	7.86	93	-27.05	0.04	59	0.58	-27
1.5	0.25	-161	14.77	5.48	79	-24.48	0.06	61	0.55	-30
1.8	0.25	-177	13.29	4.62	72	-23.26	0.07	61	0.54	-32
2.0	0.24	174	12.42	4.18	68	-22.51	0.07	61	0.53	-33
2.4	0.25	157	10.97	3.54	60	-21.12	0.09	59	0.53	-36
3.0	0.27	138	9.11	2.86	49	-19.31	0.11	58	0.52	-40
4.0	0.31	113	6.86	2.20	33	-16.88	0.14	54	0.51	-50
5.0	0.37	94	5.19	1.82	17	-14.75	0.18	48	0.50	-59

Common Emitter, $Z_0 = 50 \Omega$, 2.7 V, $I_C = 10 \text{ mA}$

Freq	$\mathbf{F}_{\min}^{[1]}$	I	R _n	
GHz	dB	Mag	Ang	n
0.5[2]	1.3	0.45	11	0.55
0.9	1.4	0.37	33	0.46
1.8	1.7	0.25	86	0.29
2.4	2.0	0.18	129	0.18

- $1.\ Matching\ constraints\ may\ make\ F_{min}\ values\ associated\ with\ high\ |\Gamma_{OPT}|\ values\ unachievable\ in\ physical\ circuits.\ See\ Figure\ 2\ for\ expected\ performance.$
- $2.\ 0.5\ \mathrm{GHz}$ noise parameter values are extrapolated, not measured.

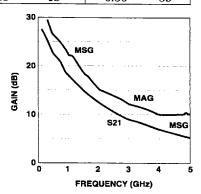


Figure 21. AT-31011 Gains vs. Frequency at $V_{\rm CE}$ = 2.7 V, $I_{\rm C}$ = 10 mA.

AT-31033 Typical Scattering Parameters, V_{CE} = 2.7 V, I_{C} = 10 mA, Common Emitter, Z_{O} = 50 Ω

	,					, 0	,		, -0	
Freq. GHz	Mag	Ang	dB	S ₂₁ Mag	Ang	dB	S ₁₂ Mag	Ang	Mag S	22 Ang
0.1	0.72	-21	26.80	21.87	154	-38.46	0.01	80	0.92	-10
0.5	0.33	-49	19.93	9.92	106	-27.31	0.04	73	0.66	-20
0.9	0.19	-47	15.51	5.96	88	-22.90	0.07	72	0.61	-22
1.0	0.17	-46	14.66	5.41	85	-22.03	0.08	72	0.60	-23
1.5	0.11	-28	11.44	3.73	72	-18.74	0.12	69	0.59	-27
1.8	0.10	-14	9.99	3.16	66	-17.26	0.14	67	0.58	-30
2.0	0.10	-6	9.15	2.87	62	-16.40	0.15	65	0.58	-32
2.4	0.10	9	7.78	2.45	54	-14.88	0.18	62	0.57	-35
3.0	0.12	23	6.16	2.03	43	-12.99	0.22	57	0.55	-41
4.0	0.15	34	4.30	1.64	27	-10.49	0.30	48	0.52	-53
5.0	0.20	36	3.01	1.41	12	-8.53	0.37	38	0.48	-65

AT-31033 Typical Noise Parameters,

Common Emitter, $Z_O = 50 \Omega$, 2.7 V, $I_C = 10 \text{ mA}$

Freq	$\mathbf{F_{min}^{[1]}}$	I	R _n	
GHz	dB	Mag	Ang	n
$0.5^{[2]}$	1.3	0.42	10	0.38
0.9	1.4	0.31	30	0.34
1.8	1.7	0.16	80	0.23
2.4	2.0	0.08	118	0.17

- 1. Matching constraints may make F_{min} values associated with high $|\Gamma_{OPT}|$ values unachievable in physical circuits. See Figure 2 for expected performance.
- 2. 0.5 GHz noise parameter values are extrapolated, not measured.

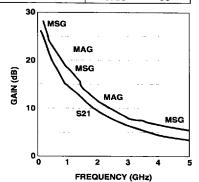


Figure 22. AT-31033 Gains vs. Frequency at V_{CE} = 2.7 V, I_{C} = 10 mA.

AT-31011 Typical Scattering Parameters, V_{CE} = 5 V, I_{C} = 1 mA, Common Emitter, I_{C} = 50 I_{C}

Freq.	S	511		$\mathbf{S_{21}}$			$\mathbf{S_{12}}$			$\mathbf{S_{22}}$		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang		
0.1	0.96	-7	11.10	3.59	174	-40.35	0.01	84	0.999	-2		
0.5	0.94	-31	10.67	3.41	153	-26.95	0.04	69	0.96	-13		
0.9	0.83	-54	9.93	3.14	133	-22.80	0.07	56	0.92	-22		
1.0	0.81	-60	9.57	3.01	129	-22.18	0.08	53	0.91	-23		
1.5	0.68	-86	8.41	2.63	108	-20.33	0.10	41	0.85	-31		
1.8	0.62	-101	7.62	2.40	97	-19.85	0.10	35	0.81	-35		
2.0	0.58	-110	7.27	2.31	91	-19.64	0.10	32	0.79	-37		
2.4	0.52	-129	6.10	2.02	78	-19.50	0.11	28	0.76	-4 1		
3.0	0.44	-157	4.78	1.73	62	-19.68	0.10	26	0.73	-45		
4.0	0.42	161	2.90	1.40	40	-19.86	0.10	31	0.70	-55		
5.0	0.45	125	1.33	1.17	21	-18.35	0.12	43	0.70	-65		

Common Emitter, $Z_O = 50 \Omega$, 5 V, $I_C = 1 \text{ mA}$

Freq	$\mathbf{F_{min}^{[1]}}$	Ι	ОРТ	R _n
GHz	dB	Mag	Ang	
0.5[2]	0.5	0.92	13	0.85
0.9	0.6	0.85	29	0.73
1.8	1.1	0.68	67	0.46
2.4	1.6	0.55	98	0.28

- 1. Matching constraints may make F_{min} values associated with high $|\Gamma_{OPT}|$ values unachievable in physical circuits. See Figure 2 for expected performance.
- 2. 0.5 GHz noise parameter values are extrapolated, not measured.

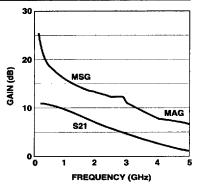


Figure 23. AT-31011 Gains vs. Frequency at V_{CE} = 5 V, I_{C} = 1 mA.

AT-31033 Typical Scattering Parameters, $V_{CE} = 5 \text{ V}$, $I_C = 1 \text{ mA}$, Common Emitter, $I_C = 50 \Omega$

			_							
Freq.	S	111		S_{21}			S ₁₂		S	22
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	0.95	-7	10.93	3.52	173	-37.78	0.01	85	0.999	-3
0.5	0.89	-31	10.24	3.25	147	-24.43	0.06	70	0.94	-15
0.9	0.73	-52	9.20	2.88	124	-20.49	0.09	59	0.88	-24
1.0	0.70	-57	8.75	2.74	119	-19.91	0.10	57	0.87	-26
1.5	0.49	-80	7.30	2.32	96	-18.15	0.12	49	0.79	-32
1.8	0.39	-93	6.41	2.09	85	-17.54	0.13	47	0.75	-36
2.0	0.34	-102	5.93	1.98	7 8	-17.19	0.14	46	0.73	-37
2.4	0.23	-122	4.77	1.73	66	-16.55	0.15	46	0.71	-40
3.0	0.13	-166	3.49	1.49	50	-15.35	0.17	49	0.68	-4 5
4.0	0.17	107	1.71	1.22	29	-12.83	0.23	51	0.66	-56
5.0	0.28	68	0.32	1.04	12	-9.96	0.32	48	0.64	-69

AT-31033 Typical Noise Parameters,

Common Emitter, $Z_O = 50 \Omega$, 5 V, $I_C = 1 \text{ mA}$

Freq	$\mathbf{F}_{\min}^{[1]}$	1	R.,	
GHz	dB	Mag	Ang	
0.5[2]	0.5	0.90	12	0.70
0.9	0.6	0.82	28	0.60
1.8	1.1	0.57	68	0.38
2.4	1.6	0.41	100	0.22

- 1. Matching constraints may make F_{min} values associated with high $|\Gamma_{OPT}|$ values unachievable in physical circuits. See Figure 2 for expected performance.
- 2. 0.5 GHz noise parameter values are extrapolated, not measured.

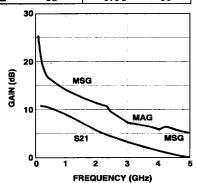


Figure 24. AT-31033 Gains vs. Frequency at $V_{\rm CE}$ = 5 V, $I_{\rm C}$ = 1 mA.

AT-31011 Typical Scattering Parameters, V_{CE} = 5 V, I_{C} = 10 mA, Common Emitter, Z_{O} = 50 Ω

			_		, 05		,		~~~, ~~_0	
Freq.							s	22		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	0.77	-21	27.41	23.46	162	-41.49	0.01	80	0.95	-8
0.5	0.48	-77	22.97	14.07	118	-30.66	0.03	61	0.70	-24
0.9	0.32	-112	19.14	9.06	98	-27.77	0.04	59	0.61	-27
1.0	0.30	-119	18.34	8.26	95	-27.11	0.04	60	0.59	-27
1.5	0.23	-151	15.23	5.78	80	-24.56	0.06	60	0.56	-29
1.8	0.22	-168	13.75	4.87	73	-23.37	0.07	60	0.55	-31
2.0	0.21	-178	12.91	4.42	69	-22.62	0.07	60	0.55	-32
2.4	0.21	163	11.46	3.74	61	-21.25	0.09	59	0.54	-36
3.0	0.23	142	9.60	3.02	50	-19.45	0.11	58	0.53	-39
4.0	0.27	116	7.36	2.33	34	-17.08	0.14	54	0.52	-48
5.0	0.33	96	5.70	1.93	19	-14.97	0.18	48	0.51	-58

AT-31011 Typical Noise Parameters,

Common Emitter, Z_O = 50 Ω , 5 V, I_C = 10 mA

Freq	$\mathbf{F_{min}^{[1]}}$	I	OPT	R _n
GHz	dB	Mag	Ang	n
$0.5^{[2]}$	1.3	0.45	11	0.55
0.9	1.4	0.37	33	0.46
1.8	1.7	0.25	86	0.29
2.4	2.0	0.18	129	0.18

- 1. Matching constraints may make F_{min} values associated with high $|\Gamma_{OPT}|$ values unachievable in physical circuits. See Figure 2 for expected performance.
- 2. 0.5 GHz noise parameter values are extrapolated, not measured.

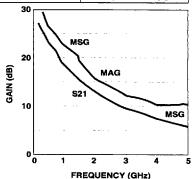


Figure 25. AT-31011 Gains vs. Frequency at $V_{\rm CE}$ = 5 V, $I_{\rm C}$ = 10 mA.

AT-31033 Typical Scattering Parameters, $V_{CE} = 5 \text{ V}$, $I_C = 10 \text{ mA}$, Common Emitter, $Z_O = 50 \Omega$

			G		, ·CE	- 1, -C				J
Freq.		511	15	S_{21}	_		S ₁₂	_		22
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	0.75	-19	26.79	21.84	155	-38.82	0.01	79	0.92	-10
0.5	0.37	-45	20.17	10.20	107	-27.39	0.04	73	0.67	-20
0.9	0.23	-42	15.79	6.16	90	-23.00	0.07	72	0.62	-22
1.0	0.21	-42	14.94	5.58	86	-22.11	0.08	72	0.61	-23
1.5	0.15	-30	11.75	3.87	73	-18.86	0.11	69	0.60	-27
1.8	0.14	-21	10.30	3.27	67	-17.37	0.14	66	0.59	-29
2.0	0.13	-17	9.47	2.97	63	-16.51	0.15	65	0.58	-31
2.4	0.13	-7	8.08	2.54	55	-15.00	0.18	62	0.57	-35
3.0	0.13	3	6.47	2.11	45	-13.14	0.22	57	0.56	-41
4.0	0.14	19	4.61	1.7	29	-10.67	0.29	48	0.53	-52
5.0	0.18	28	3.33	1.47	14	-8.73	0.37	38	0.49	-64

AT-31033 Typical Noise Parameters,

Common Emitter, $Z_O = 50 \Omega$, 5 V, $I_C = 10 \text{ mA}$

Freq	$\mathbf{F}_{\min}^{[1]}$	$\Gamma_{ extbf{OPT}}$		R _n
GHz	dB	Mag	Ang	
$0.5^{[2]}$	1.3	0.42	10	0.38
0.9	1.4	0.31	30	0.34
1.8	1.7	0.16	80	0.23
2.4	2.0	0.08	118	0.17

- 1. Matching constraints may make F_{min} values associated with high $|\Gamma_{OPT}|$ values unacheivable in physical circuits. See Figure 2 for expected performance.
- 2. 0.5 GHz noise parameter values are extrapolated, not measured.

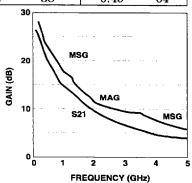
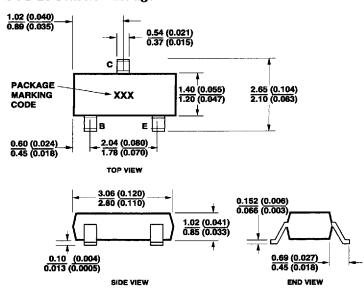
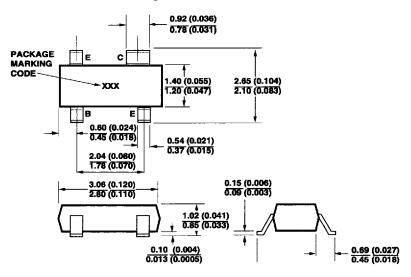


Figure 26. AT-31033 Gains vs. Frequency at $V_{\rm CE}$ = 5 V, $I_{\rm C}$ = 10 mA.



Ordering Information

Part Number	Increment	Comments	
AT-31011-BLK	100	Bulk	
AT-31011-TR1	3000	7" Reel	
AT-31033-BLK	100	Bulk	
AT-31033-TR1	3000	7" Reel	


Package Dimensions

SOT-23 Plastic Package

DIMENSIONS ARE IN MILLIMETERS (INCHES)

SOT-143 Plastic Package

DIMENSIONS ARE IN MILLIMETERS (INCHES)

Europe: Call your local HP sales office.

For technical assistance or the location of

your nearest Hewlett-Packard sales office,

Far East/Australasia: Call your local HP

distributor or representative call:

Americas/Canada: 1-800-235-0312 or

Data subject to change. Copyright © 1997 Hewlett-Packard Co.

Obsoletes 5965-1401E Printed in U.S.A. 5965-8919E (9/97)

408-654-8675

sales office.

Japan: (81 3) 3335-8152

nted in U.S.A. 5905-891912 (9/8

86141