FEATURES

－High Isolation：＞20 dB
－Low Insertion Loss： 0.6 dB at 2 GHz
－Low Control Voltage Operation：to +2.5 V
－Low Harmonic Levels
－Low Profile Surface Mount Package

APPLICATIONS

－CDMA Wireless Handsets

device uses patented circuit topologies to provide low insertion loss，high port－to－port isolation，and high linearity needed to enhance the performance of CDMA radios．The AWS5534 is offered in a 12－lead 3 $\mathrm{mm} \times 3 \mathrm{~mm}$ MLF package．

PRODUCT DESCRIPTION

The AWS5534 is a single pole，three throw（SP3T） RF switch developed for CDMA applications； specifically，highly symmetric single－tone desensitivity performance．Manufactured in ANADIGICS＇s state－of－the－art pHEMT process，the

Figure 2: Pinout (X-ray Top View)

Table 1: Pin Description

PIN	NAME	DESCRIPTION
1	V1	Control Voltage, RF Path 1
2	RF1	RF Port, Path 1
3	NC	No Connection ${ }^{(1)}$
4	NC	No Connection ${ }^{(1)}$
5	RF2	RF Port, Path 2
6	V2	Control Voltage, RF Path 2
7	NC	No Connection ${ }^{(1)}$
8	RF3	RF Port, Path 3
9	V3	Control Voltage, RF Path 3
10	NC	No Connection ${ }^{(1)}$
11	RFC	RF Common Port
12	NC	No Connection ${ }^{(1)}$

Notes:
(1) Pins 3, 4, 7, 10 and 12 are not connected in the package. It is recommend that these pins be grounded, but is not necessary.

ELECTRICALCHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
Control Voltages $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right)$	-	+10.0	V
RF Input Power ($\left.\mathrm{P}_{\text {in }}\right)^{(1)}$	-	10	W
Storage Temperature (Tsta $)$	-65	+150	${ }^{\circ} \mathrm{C}$

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Notes:
(1) at RF1, RF2, RF3, and RFC

Table 3: Operating Ranges

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
RF Frequency (f)	0.5	-	2.5	GHz	
Control Voltages $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right)$	-0.2 +2.5	- -	+0.2 +5	V	RF path OFF state RF path ON state
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	-30	-	+85	${ }^{\circ} \mathrm{C}$	

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Table 4: Electrical Specifications
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, RF ports terminated with $50 \Omega, \mathrm{~V}_{\mathrm{n}}=+2.7 \mathrm{~V}$ and is the Control Voltage for the ON path, RFC-
RFn; $\mathrm{V}_{\mathrm{x}}=0 \mathrm{~V}$ and is the Control Voltage for the other two OFF paths, RFC-RFx)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
$\begin{aligned} & \text { Insertion Loss } \\ & 1 \mathrm{GHz} \\ & 2 \mathrm{GHz} \end{aligned}$	-	$\begin{gathered} 0.45 \\ 0.6 \end{gathered}$	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	dB	RFC port to selected RFn port
$\begin{aligned} & \text { Return Loss }{ }^{(1)} \\ & 1 \mathrm{GHz} \\ & 2 \mathrm{GHz} \end{aligned}$	-	$\begin{aligned} & -25 \\ & -22 \end{aligned}$	$\begin{aligned} & -22 \\ & -20 \end{aligned}$	dB	RFC port to selected RFn port
Isolation 1 GHz 2 GHz	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 26 \\ & 20 \end{aligned}$	-	dB	RFC port to isolated RFx port
Input Third Order Intercept ${ }^{(2)}$ 800 MHz Cellular band 1900 MHz PCS Band		$\begin{aligned} & +68 \\ & +66 \end{aligned}$	-	dBm	RFC port to selected RFn port
Cross Modulation ${ }^{(3)}$ 800 MHz Cellular Band 1900 MHz PCS Band		$\begin{aligned} & -105 \\ & -108 \end{aligned}$	-	dBm	RFC port to selected RFn port
2nd Harmonic Suppression 837 MHz 1880 MHz		$\begin{aligned} & -81 \\ & -86 \end{aligned}$		dBc	RFC port to selected RFn port $\begin{aligned} & \mathrm{P}_{\mathrm{IN}}=+25.5 \mathrm{dBm} \\ & \mathrm{Pin}^{2}=+24 \mathrm{dBm} \end{aligned}$
3rd Harmonic Suppression $837 \mathrm{MHz}$ 1880 MHz	-	$\begin{aligned} & -79 \\ & -82 \end{aligned}$	-	dBc	RFC port to selected RFn port $\begin{aligned} & \mathrm{P}_{\mathrm{IN}}=+25.5 \mathrm{dBm} \\ & \mathrm{P}_{\mathrm{IN}}=+24 \mathrm{dBm} \end{aligned}$
Current Consumption	-	-	30	$\mu \mathrm{A}$	each Vn port

Notes:
(1) Isolated RFx ports have a return loss of approximately -0.3 dB .
(2) For the Cellular Band, two tones with PIN $=+22.5 \mathrm{dBm}$ each, at 837 and 838 MHz . For the PCS Band, two tones with PIN $=+21 \mathrm{dBm}$ each, at 1880 and 1881 MHz .
(3) For the Cellular Band, one CW interferer at 881.5 MHz with -23 dBm power, and one modulated transmit signal at 849 MHz with +25.5 dBm power. For the PCS Band, one CW interferer at 1960 MHz with -23 dBm power, and one modulated transmit signal at 1910 MHz with +24 dBm power.

Table 5: Switch Control Truth Table

CONTROL VOLTAGE			RF PATH SELECTION		
V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$	RFC - RF1	RFC - RF2	RFC - RF3
+2.5 to +5 V	-0.2 to +0.2 V	-0.2 to +0.2 V	ON	OFF	OFF
-0.2 to +0.2 V	+2.5 to +5 V	-0.2 to +0.2 V	OFF	ON	OFF
-0.2 to +0.2 V	-0.2 to +0.2 V	+2.5 to +5 V	OFF	OFF	ON

Figure 3: Insertion Loss vs. Frequency (ON path, $\mathrm{Vn}=+2.7 \mathrm{~V}, \mathrm{Vx}=0 \mathrm{~V}$)

Figure 4: Return Loss vs. Frequency (ON path, $\mathrm{Vn}=+2.7 \mathrm{~V}, \mathrm{Vx}=0 \mathrm{~V}$)

Figure 5: Isolation vs. Frequency (OFF path, $\mathrm{Vn}=+2.7 \mathrm{~V}, \mathrm{Vx}=0 \mathrm{~V}$)

AWS5534

APPLICATION INFORMATION

Circuit Applications

External component requirements for the AWS5534 are shown in Figure 6. Application details are listed in the following notes:

1. Cb are DC blocking capacitors external to the device. A value of 100 pF is sufficient for operation to 500 MHz . The values may be tailored to provide specific electrical responses.
2. Lesd provides a means to increase the ESD protection on a specific RF port, typically the port attached to the antenna. By using Lesd as an RF choke on an RF port, an ESD protection to $\pm 12 \mathrm{kV}$ contact discharge has been demonstrated.

Figure 6: Application Schematic

PACKAGE OUTLINE

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. MAX. PACKAGE WARPAGE IS 0.05 mm .
3. MAXIMUM ALLOWABLE BURRS IS $0.076 \mathrm{~mm} \operatorname{IN}$ ALL DIRECTIONS.
4. PIN \#1 ID ON TOP WILL BE LASER MARKED.
5. A MAXIMUM 0.15 mm PULL BACK (L1) MAYBE PRESENT.
L MINUS L1 TO BE EQUAL TO OR GREATER THAN 0.30 mm .
6. DIMENSION b APPLIES TO METALLIZED TERMINAL

AND IS MEASURED BETWEEN 0.15 AND 0.30 mm
FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL
RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION
b SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
A. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED heat sink slug as well as the terminals.
8. REFERENCE JEDEC OUTLINE MO-220.

Figure 7: S26 Package Outline - 12 Pin 3mm x 3mm MLF

AWS5534

COMPONENT PACKAGING

NOTES:

1. MATERIAL: 3000 (CARBON FILLED POLYCARBONATE)

100\% RECYCLABLE.
Figure 8: Tape \& Reel Packaging

Square Module / MLF

Figure 9: Tape \& Reel Package Orientation

Table 6: Tape \& Reel Dimensions

PACKAGE TYPE	TAPE WIDTH	POCKET PITCH	REEL CAPACITY	MAX REEL DIA
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$	12 mm	8 mm	1000	$7 "$

AWS5534
NOTES

AWS5534

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING
AWS5534S26	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 Pin $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ MLF	Tape and Reel

-analadicics

ANADIGICS, Inc.

141 Mount Bethel Road
Warren, New Jersey 07059, U.S.A.
Tel: +1 (908) 668-5000
Fax: +1 (908) 668-5132
URL: http://www.anadigics.com
E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

