
3121, 3122, AND 3123

Data Sheet **27621.4B**†

HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE OPERATION

Pinning is shown viewed from branded side.

ABSOLUTE MAXIMUM RATINGS at $T_A = +25^{\circ}C$

T_c..... -65°C to +170°C

These Hall-effect switches are monolithic integrated circuits with tighter magnetic specifications, designed to operate continuously over extended temperatures to +150°C, and are more stable with both temperature and supply voltage changes. The unipolar switching characteristic makes these devices ideal for use with a simple bar or rod magnet. The three basic devices (A3121, A3122, and A3123) are identical except for magnetic switch points.

Each device includes a voltage regulator for operation with supply voltages of 4.5 volts to 24 volts, reverse battery protection diode, quadratic Hall-voltage generator, temperature compensation circuitry, small-signal amplifier, Schmitt trigger, and an open-collector output to sink up to 25 mA. With suitable output pull up, they can be used with bipolar or CMOS logic circuits. The A3121 is an improved replacement for the UGx3113 and UGx3119.

The first character of the part number suffix determines the device operating temperature range. Suffix 'E–' is for the automotive and industrial temperature range of -40°C to +85°C. Suffix 'L–' is for the automotive and military temperature range of -40°C to +150°C. Three package styles provide a magnetically optimized package for most applications. Suffix '–LT' is a miniature SOT89/TO-243AA transistor package for surface-mount applications; suffix '–U' is a three-lead plastic mini-SIP while suffix '–UA' is a three-lead ultra-mini-SIP.

FEATURES and BENEFITS

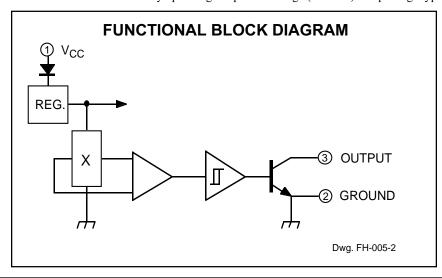
- Superior Temp. Stability for Automotive or Industrial Applications
- 4.5 V to 24 V Operation ... Needs Only An Unregulated Supply
- Open-Collector 25 mA Output ... Compatible with Digital Logic
- Reverse Battery Protection
- Activate with Small, Commercially Available Permanent Magnets
- Solid-State Reliability ... No Moving Parts
- Small Size
- Resistant to Physical Stress

The A3121xU is not for new design.
The A3122xU and A3123xU are last-time buy.
Orders accepted until April 15, 2002.

Always order by complete part number, e.g., A3121EU.

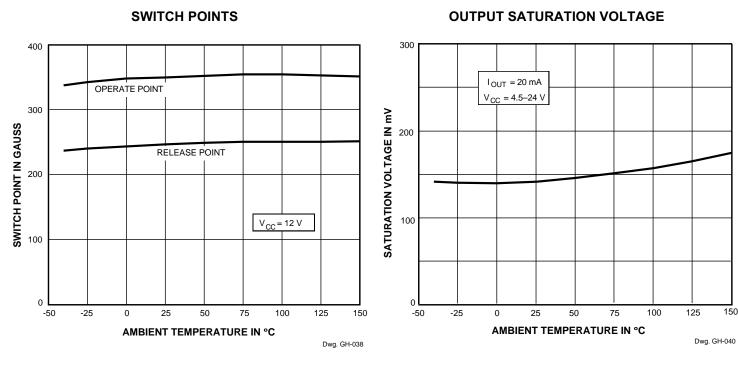
ELECTRICAL CHARACTERISTICS over operating temperature range, at V_{CC} = 12 V.

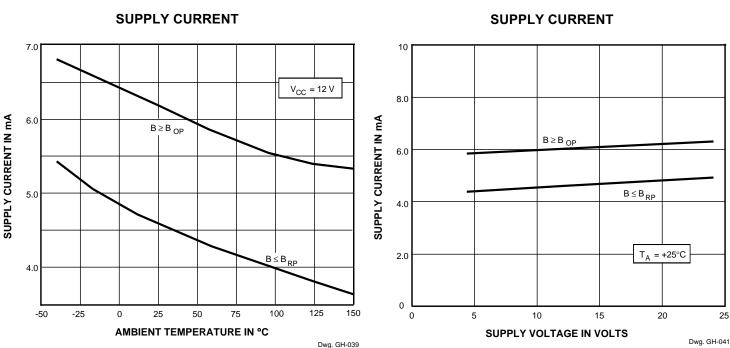
			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V _{cc}	Operating	4.5	_	24	V
Output Saturation Voltage	V _{OUT(SAT)}	I _{OUT} = 20 mA, B > B _{OP}	_	140	400	mV
Output Leakage Current	I _{OFF}	V _{OUT} = 24 V, B < B _{RP}	_	<1.0	10	μА
Supply Current	I _{cc}	B < B _{RP} (Output OFF)	_	4.6	9.0	mA
Output Rise Time	t _r	$R_{L} = 820 \Omega, C_{L} = 20 pF$	_	0.04	2.0	μs
Output Fall Time	t _f	$R_{L} = 820 \Omega, C_{L} = 20 pF$	_	0.18	2.0	μs

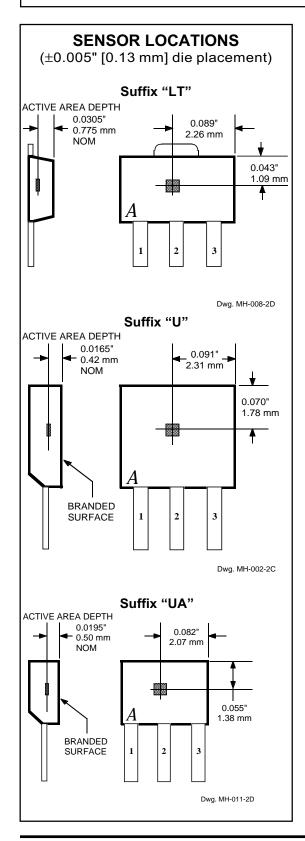

MAGNETIC CHARACTERISTICS in gauss over operating supply voltage range.

		Part Numbers*									
		A3121			A3122			A3123			
Characte	ristic	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max	
B _{OP} at T _A	_ = 25°C	250	350	450	280	340	400	250	345	440	
over	operating temp. range	220	350	500	260	340	430	230	345	470	
B _{RP} at T _A	_ = 25°C	125	245	380	140	235	330	180	240	300	
over	operating temp. range	80	245	410	120	235	360	160	240	330	
B _{hys} at T _A	_ = 25°C	70	105	140	70	105	140	70	105	140	
over	operating temp. range	60	105	150	70	105	140	70	105	140	

NOTES: Typical values are at $T_A = +25$ °C and $V_{CC} = 12$ V.


 B_{OP} = operate point (output turns ON); B_{RP} = release point (output turns OFF); B_{hys} = hysteresis (B_{OP} - B_{RP}).


^{*}Complete part number includes a suffix to identify operating temperature range (E- or L-) and package type (-LT, -U, or -UA).

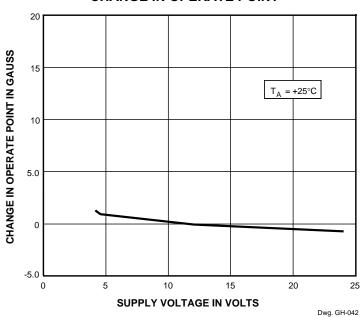

25

TYPICAL OPERATING CHARACTERISTICS

^{*} Complete part number includes a suffix denoting operating temperature range (E- or L-) and package type (-LT, -U, or -UA).

OPERATION

The output of these devices (pin 3) switches low when the magnetic field at the Hall sensor exceeds the operate point threshold (B_{op}). At this point, the output voltage is $V_{OUT(SAT)}$. When the magnetic field is reduced to below the release point threshold (B_{RP}), the device output goes high. The difference in the magnetic operate and release points is called the hysteresis (B_{hys}) of the device. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.

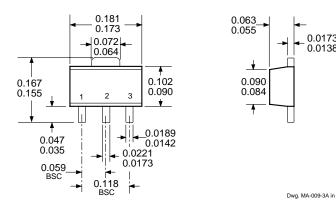

APPLICATIONS INFORMATION

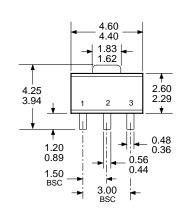
Extensive applications information for Hall-effect sensors is available in:

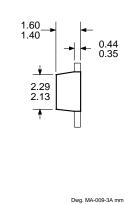
- Hall-Effect IC Applications Guide, Application Note 27701;
- Hall-Effect Devices: Soldering, Gluing, Potting, Encapsulating, and Lead Forming, Application Note 27703.1;
- Soldering of Through-Hole Hall-Sensor Dervices, Application Note 27703; and
- Soldering of Surface-Mount Hall-Sensor Devices, Application Note 27703.2.

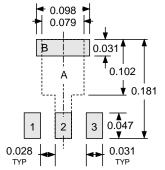
All are provided in *Allegro Electronic Data Book*, AMS-702. or at www.allegromicro.com

CHANGE IN OPERATE POINT

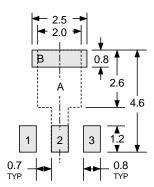

PACKAGE DESIGNATOR 'LT' (SOT89/TO-243AA)


0.0173


0.0138


Dimensions in Inches (for reference only)

Dimensions in Millimeters (controlling dimensions)



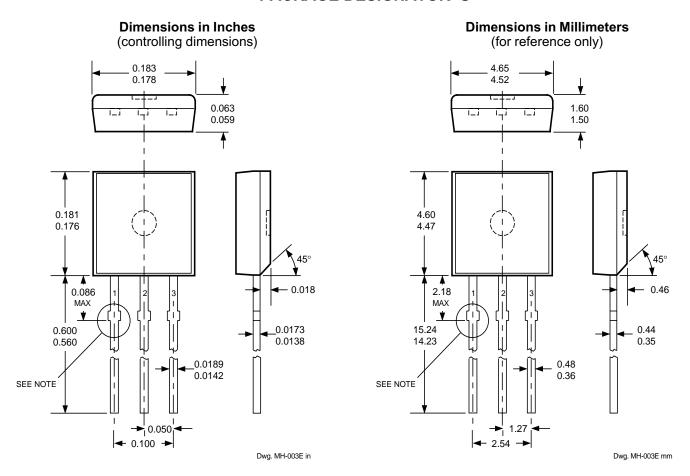
Pads 1, 2, 3, and A — Standard SOT-89 Layout

Pads 1, 2, 3, and B — Low-Stress Version

Pads 1, 2, and 3 only — Lowest Stress, But Not Self Aligning

Dwg. MA-012-3 in

Pads 1, 2, 3, and A — Standard SOT-89 Layout Pads 1, 2, 3, and B — Low-Stress Version


Pads 1, 2, and 3 only — Lowest Stress, But Not Self Aligning

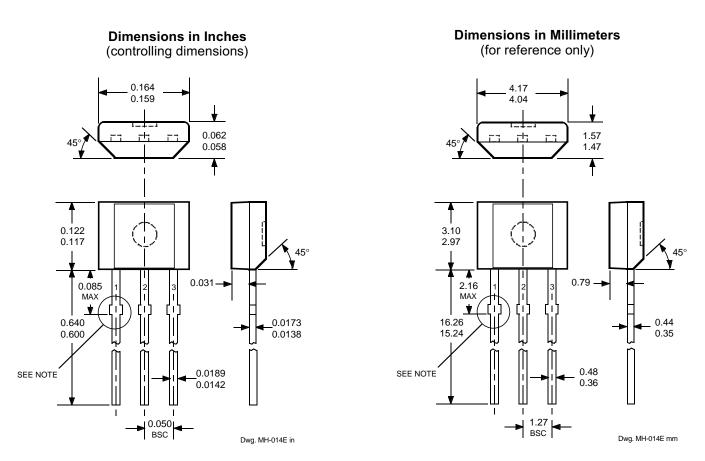
Dwg. MA-012-3 mm

Exact body and lead configuration at vendor's option within limits shown.

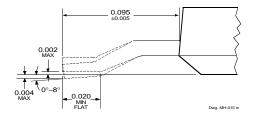
Supplied in bulk pack (500 pieces per bag) or add "TR" to part number for tape and reel.

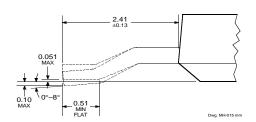
PACKAGE DESIGNATOR 'U'

Devices in the 'U' package are NOT RECOMMENDED FOR NEW DESIGN


NOTES: 1. Tolerances on package height and width represent allowable mold offsets.

Dimensions given are measured at the widest point (parting line).


- 2. Exact body and lead configuration at vendor's option within limits shown.
- 3. Height does not include mold gate flash.
- 4. Recommended minimum PWB hole diameter to clear transition area is 0.035" (0.89 mm).
- 5. Where no tolerance is specified, dimension is nominal.



PACKAGE DESIGNATOR 'UA'

Surface-Mount Lead Form (order A312xxUA-TL)

- NOTES: 1. Tolerances on package height and width represent allowable mold offsets. Dimensions given are measured at the widest point (parting line).
 - 2. Exact body and lead configuration at vendor's option within limits shown.
 - 3. Height does not include mold gate flash.
 - 4. Recommended minimum PWB hole diameter to clear transition area is 0.035" (0.89 mm).
 - 5. Where no tolerance is specified, dimension is nominal.
 - 6. Supplied in bulk pack (500 pieces per bag).

The products described herein are manufactured under one or more of the following U.S. patents: 5,045,920; 5,264,783; 5,442,283; 5,389,889; 5,581,179; 5,517,112; 5,619,137; 5,621,319; 5,650,719; 5,686,894; 5,694,038; 5,729,130; 5,917,320; and other patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support appliances, devices, or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

