EUPEC

占」E 〕 查询TD106N06KOF供应商 ■ 3403297 0003090 629 ■ UPEC 捷多邦,专业PCB打样工厂,24小时加急出货

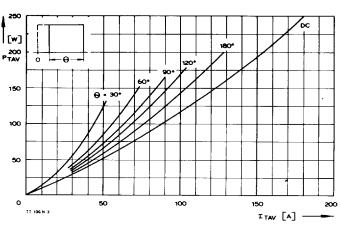
TT 106 N, TD 106 N, DT 106 N

löchstzulässige Werte	Maximum rated values					
Periodische Vorwärts- und	repetitive peak forward off-state	$t_{vi} = -40$ °C $t_{vj max}$	VDRM, VRRM	600	800	V
Rückwärts-Spitzensperrspannung	and reverse voltages	1 Vij - 40 0 Vij max	*DEMI *REM	1000,		v
nuckwarts-spitzenspenspannung	and reverse voltages			1400,		v
			111 -1	1400,	1800	v
					1000	v
Vorwärts-Stoßspitzenspannung	non repetitive peak	$t_{vj} = -40^{\circ}C \dots t_{vj \ max}$	V _{DSM} = V _{DRM}			
	forward off-state voltage	165	ALC: NO W			
Rückwärts-Stoßspitzenspannung	non repetitive peak	$t_{vj} = +25^{\circ}Ct_{vj max}$	$V_{RSM} = V_{RRM}$	-	F 100	V
	reverse voltage					
Durchlaßstrom-Grenzeffektivwert	RMS on-state current	1	ITRMSM		180	Α
Dauergrenzstrom	average on-state current	t _c = 85°C	ITAVM		106	Α
		$t_c = 78^{\circ}C$			115	А
Stoßstrom-Grenzwert	surge current	$t_{vi} = 25^{\circ}C, t_{p} = 10 \text{ ms}$	ITSM		2250	A
Stoballom-Grenzwert	Juige current		15M		2000	A
One was to activate and	(12 da contrato	$t_{vj} = t_{vj \max}, t_p = 10 \text{ ms}$	∫i²dt		25300	A ² s
Grenzlastintegral	∫i ² dt-value	$t_{vj} = 25^{\circ}C, \ t_p = 10 \text{ ms}$	j i-ai			
		$t_{vj} = t_{vj max}, t_p = 10 ms$		2	20000	A²s
Kritische Stromsteilheit	critical rate of rise of on-state current	$v_D \le 67\% V_{DRM}$, $f_o = 50 Hz$ $v_L = 10 V$, $i_{GM} = 0,6 A$, $di_G/dt = 0,6 A/\mu s$	(di/dt) _{cr}		150	Α/μ
Kritische Spannungssteilheit	critical rate of rise of off-state voltage	$t_{vj} = t_{vj \text{ max.}}, v_D = 67\% V_{DRM}$	(dv/dt) _{cr}	30	1000	V/µ:
harakteristische Werte	Characteristic values					
		t t. i 200 A	VT	max.	1,78	3 1/
Durchlaßspannung	on-state voltage	$t_{vj} = t_{vj max}, i_T = 300 \text{ A}$		max.		
Schleusenspannung	threshold voltage	t _{vj} =t _{vj max}	V _{T(TO)}		0,9	
Ersatzwiderstand	slope resistance	$t_{vj} = t_{vj max}$	r _T		,	mΩ
Zündstrom	gate trigger current	$t_{vj} = 25^{\circ}C, v_D = 6 V$	IGT	max.	150	mA
Zündspannung	gate trigger voltage	$t_{vi} = 25^{\circ}C, v_D = 6 V$	V _{GT}	max.	1,4	V
Nicht zündender Steuerstrom	gate non trigger current	$t_{vj} = t_{vj max}, v_D = 6 V$	l _{GD}	max.	5	mA
Nicht zündende Steuerspannung	gate non trigger voltage	$t_{vj} = t_{vj max}$, $v_D = 0.5 V_{DRM}$	V _{GD}	max.	0,2	v
Haltestrom	holding current	$t_{vi} = 25^{\circ}C, v_D = 6 V, R_A = 5 \Omega$	I _H	max.		mA
Einraststrom		1 '		max.		mA
Emrasistrom	latching current	$t_{vj} = 25^{\circ}C, v_D = 6 V, R_{GK} \ge 10 \Omega$	μ.	max.	020	
		$i_{GM} = 0.6 \text{ A}, di_G/dt = 0.6 \text{ A}/\mu \text{ s}, t_g = 20 \mu \text{ s}$			~~	
Vorwärts- un <mark>d Rückw</mark> ärts-	forward off-state and	$t_{vj} = t_{vj max}, v_D = V_{DRM}, v_R = V_{RRM}$	i _D , i _R	max.	30	mA
Sperrstrom	reverse currents		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
Zündverzug	gate controlled delay time	t _{vj} = 25°C, i _{GM} = 0,6 A, di _G /dt = 0,6 A/μs	t _{gd}	max.	3	μs
Freiwerdezeit	circuit commutated turn-off time	siehe Techn. Erl./see Techn. Inf.	tq	typ.	150	μs
Isolations-Prüfspannung	insulation test voltage	RMS, f = 50 Hz, t = 1 min	VISOL	10-	3	kV
hermische Eigenschaften	Thermal properties					
Innerer Wärmewiderstand	thermal resistance.	$\theta = 180^{\circ} \text{el, sinus: pro Modul/per module}$	R _{thJC}	max.	0,165	°C ///
innerer warmewiderstand			thJC		0,33	
	junction to case	pro Zweig/per arm		max.		
	E B JN.DZSC.CO	DC: pro Modul/per module		max.		
	015	pro Zweig/per arm		max.	0,31	°C/W
	ALL WALLS					
Übergangs-Wärmewiderstand	thermal resistance,	pro Modul/per module	RthCK	max.	0,04	°C/W
	case to heatsink	pro Zweig/per arm		max.	0,08	°C/W
Höchstzul. Sperrschichttemperatur	max. junction temperature		+.		1	40°C
•			t _{vj max}	40	°C+1	
Betriebstemperatur	operating temperature		t _{c op}			
Lagertemperatur	storage temperature		t _{stg}	- 40	°C+1	40°C
lechanische Eigenschaften	Mechanical properties					
Si-Elemente mit Druckkontakt	Si-pellets with pressure contact					
Innere Isolation	internal insulation	9 W (9 - 1 -				AIN
Anzugsdrehmomente	tightening torques		N41			A NI
mechanische Befestigung	mounting torque	Toleranz/tolerance $\pm 15\%$	M1			4 Nm
elektrische Anschlüsse	terminal connection torque	Toleranz/tolerance + 5%/- 10%	M2			4 Nm
Gewicht	weight		G		typ. 2	250 g
Kriechstrecke	creepage distance				15	5 mm
Schwingfestigkeit	vibration resistance	f = 50 Hz			5 · 9,81	m/s²
Schwinglestigkeit	Vibration resistance				0,0,0	

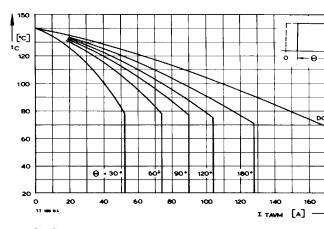
Diese Module können auch mit gemeinsamer Anode oder gemeinsamer Kathode geliefert werden. These modules can also be supplied with common anode or common cathode.

Recognized by UNDERWRITERS LABORATORIES INC.

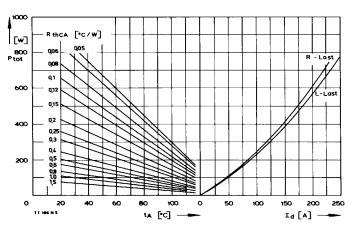
150


TT 106 N, TD 106 N, DT 106 N

EUPEC

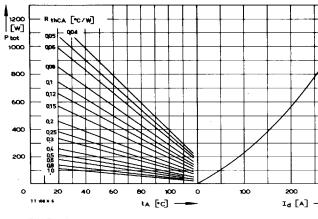

[°c] 120 100 80 60 40 Θ. 30 90 20 20 100 0 20 40 60 80 17.306 N I TAVM [A]

Bild/Fig. 1 Durchlaßverlustleistung eines Zweiges/On-state power loss per arm P_{TAV} Parameter: Stromflußwinkel/current conduction angle Θ



Höchstzulässige Gehäusetemperatur t_C in Abhängigkeit vom Zweigstrom Maximum allowable case temperature t_C versus current per arm

Bild/Fig. 3


Durchlaßverlustleistung eines Zweiges/On-state power loss per arm P_{TAV} Parameter: Stromflußwinkel/current conduction angle Θ

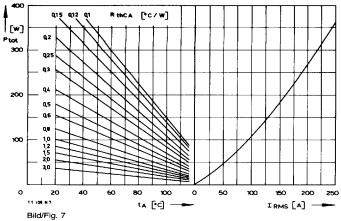
Bild/Fig. 5

 $\begin{array}{l} B2-Z \\ \hline weipuls-Brückenschaltung/Two-pulse bridge circuit \\ Höchstzulässiger Ausgangsstrom I_d in Abhängigkeit von der Umgebungstemperatur t_A. \end{array}$

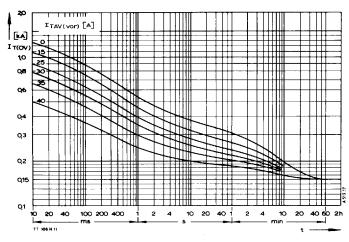
Maximum allowable output current I_d versus ambient temperature t_A. Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/ thermal resistance case to ambient R_{thCA} Bild/Fig. 4 Höchstzulässige Gehäusetemperatur $t_{\rm C}$ in Abhängigkeit vom Zweigstrom Maximum allowable case temperature $t_{\rm C}$ versus current per arm

Bild/Fig. 6

B6 - Sechspuls-Brückenschaltung/Six-pulse bridge circuit


Höchstzulässiger Ausgangsstrom $I_{\rm d}$ in Abhängigkeit von der Umgebungstemperatur $t_{\rm A}.$

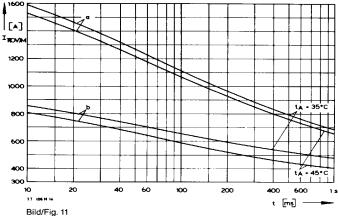
Maximum allowable output current I_d versus ambient temperature t_A. Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/ thermal resistance case to ambient R_{thCA}


61E D 🔳 3403297 0001092 4T1 🔳 UPEC

TT 106 N, TD 106 N, DT 106 N

EUPEC

W1C - Einphasen-Wechselwegschaltung/Single-phase inverse parallel circuit Höchstzulässiger Strom IRMS in Abhängigkeit von der Umgebungstemperatur tA. Maximum allowable current IRMS versus ambient temperature ta. Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/ thermal resistance case to ambient RthCA

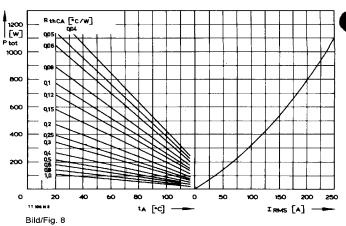


Bild/Fig. 9

B2 - Zweipuls-Brückenschaltung/Two-pulse bridge circuit

Überstrom je Zweig $I_{T(OV)}$ bei Luftselbstkühlung, $t_A = 45$ °C, Kühlkörper KP0,33S. Overload on-state current per arm $I_{T(OV)}$ at natural cooling, $t_A = 45^{\circ}C$, heatsink type KP 0.33 S.

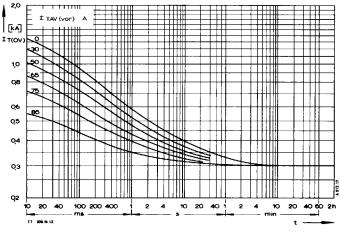
Parameter: Vorlaststrom je Zweig/pre-load current per arm ITAV(vor)



Grenzstrom je Zweig $I_{T(OV)M}$ bei Luftselbstkühlung, $t_A = 45^{\circ}C$ und verstärkter Luftkühlung, $t_A = 35^{\circ}$ C, Kühlkörper KP0,33S, $v_{RM} = 0.8 V_{RRM}$. Limiting overload on-state current per arm $|_{T(oV)M}$ at natural ($t_A = 45^{\circ}C$) and forced ($t_A = 35^{\circ}C$) cooling, heatsink type KP0.33 S, $v_{RM} = 0.8$ V_{RRM}.

a - Belastung nach Leerlauf/current surge under no-load conditions b

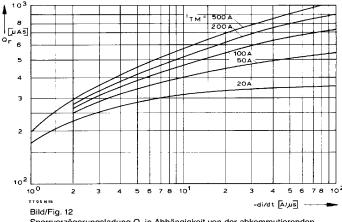
- Belastung nach Betrieb mit Dauergrenzstrom ITAVM


Current surge occurs during operation at limiting mean on-state current rating ITAVM

W3C - Dreiphasen-Wechselwegschaltung/Three-phase inverse parallel circuit Höchstzulässiger Strom je Phase I_{RMS} in Abhängigkeit von der Umgebungstemperatur t_A.

Maximum allowable current per phase I_{RMS} versus ambient temperature t_A. Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/

thermal resistance case to ambient RthCA

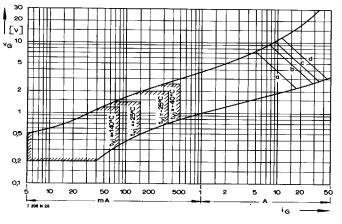

Bild/Fig. 10

B2 - Zweipuls-Brückenschaltung/Two-pulse bridge circuit

Überstrom je Zweig I_{T(OV)} bei verstärkter Luftkühlung, $t_A = 35^{\circ}C$, $V_L = 90$ l/s, Kühlkörper KP0,33S.

Overload on-state current per arm $I_{T(OV)}$ at forced cooling, t_A = 35°C, V_L = 90 l/s, heatsink type KP 0.33 S.

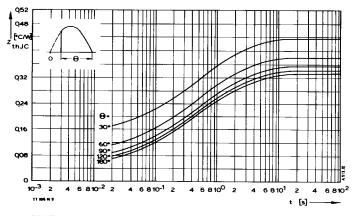
Parameter: Vorlaststrom je Zweig/pre-load current per arm ITAV(vor)



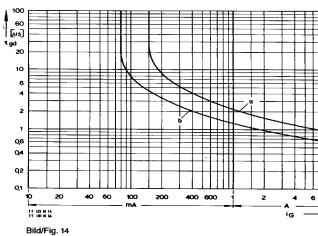
Sperrverzögerungsladung Qr in Abhängigkeit von der abkommutierenden Stromsteilheit -di/dt bei t_{vj} = t_{vj max}, v_R = 0,5 V_{RRM}, v_{RM} = 0,8 V_{RRM}. Der angegebene Verlauf ist gültig für 90% aller Elemente. Recovered charge versus the rate of decay of the forward on-state current -di/dt at $t_{vj} = t_{vj max}$, $v_{R} = 0.5 V_{RRM}$, $v_{RM} = 0.8 V_{RRM}$. These curves are valid for 90% of all devices.

Parameter: Durchlaßstrom iTM/On-state current iTM

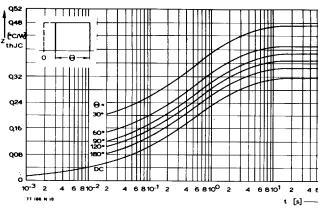
72


TT 106 N, TD 106 N, DT 106 N

Bild/Fig. 13 Zündboroiob


Zündbereich und Spitzensteuerleistung bei $v_D = 6 V$. Gate characteristic and peak gate power dissipation at $v_D = 6 V$.

Parameter:		а	b	с	d
Steuerimpulsdauer/Pulse duration tg	[ms]	10	1	0,5	0,1
Höchstzulässige Spitzensteuerleistung/					
Maximum allowable peak gate power	[W]	40	80	100	150


Bild/Fig. 15

Transienter innerer Wärmewiderstand je Zweig Z_{(th),C}. Transient thermal impedance per arm Z_{(th),C}, junction to case.

Din 41787, t_a = 1 μ s, t_y = 25°C. a – außerster Verlauf/limiting characteristic

b - typischer Verlauf/typical characteristic

Transienter innerer Wärmewiderstand je Zweig Z_{(th)JC}. Transient thermal impedance, junction to case, per arm Z_{(th)JC}.

[Pos. n	1	2	3	4	5
	R _{thn} [°C/W]	0,0127	0,03	0,049	0,15	0,07
l	τ _n [s]	0,001	0,0092	0,074	0,57	3,51

$$Z_{thJC} = \sum_{n=1}^{n_{max}} R_{thn} (1 - e^{t/\tau_n})$$

Transienter Wärmewiderstand Z_{thJC} pro Zweig für DC. Transient thermal impedance Z_{thJC} per arm for DC.