DW PACKAGE

DUAL DIFFERENTIAL PSEUDO-ECL TO ECL TRANSLATORS AND DUAL DIFFERENTIAL ECL TO PSEUDO-ECL TRANSLATORS

SDNS005B - SEPTEMBER 1993 - REVISED OCTOBER 1995

- Dual ECL to Pseudo-ECL and Pseudo-ECL to ECL Translators
- Single 5-V Power Supply
- Advanced BiCMOS Technology
- Typical Application: Interface Between an ECL-Level Optical Transmitter and a Pseudo-ECL-Output Level Parallel-to-Serial Converter
- Packaged in 24-Pin Plastic Small-Outline Package

description

The TNETA1545 provides four buffers. Two buffers for two differential ECL-input signals referenced to GND are translated to differential psuedo-ECL (PECL) outputs referenced to 5 V instead of GND.

Two buffers for two differential PECL-input signals referenced to 5 V instead of GND are translated to differential ECL outputs referenced to GND.

(TOP VIEW) VCC ECLIN1 PECLOUT1 ECLIN1 3 22 PECLOUT1 21 V_{CC} Vcc 20 PECLOUT2 ECLIN2 19 PECLOUT2 ECLIN2 GND 18 ∏ GND ECLOUT1 17 PECLIN1 ECLOUT1 16 PECLIN1 10 15 PECLIN2 ECLOUT2 ECLOUT2 | 11 14 PECLIN2 13 GND GND WWW.DZSC.COM

functional block diagram

ECLIN1 2 ECLIN1 3	ECL-to-PECL Translator	23 PECLOUT1 22 PECLOUT1
ECLIN2 5	ECL-to-PECL	20 PECLOUT2
ECLIN2 6	Translator	19 PECLOUT2
PECLIN1 17	PECL-to-ECL	8 ECLOUT1
PECLIN1 16	Translator	9 ECLOUT1
PECLIN2 15	441	10 ECLOUT2
PECLIN2 14	PECL-to-ECL Tra <mark>ns</mark> lator	11 ECLOUT2

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TNETA1545

DUAL DIFFERENTIAL PSEUDO-ECL TO ECL TRANSLATORS AND DUAL DIFFERENTIAL ECL TO PSEUDO-ECL TRANSLATORS

SDNS005B - SEPTEMBER 1993 - REVISED OCTOBER 1995

Terminal Functions

TERMINAL		1/0	DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
ECLIN1, ECLIN1	3, 2	I	ECL-compatible inputs for ECL-to-PECL translator		
PECLOUT1, PECLOUT1	23, 22	0	PECL-compatible outputs from ECL-to-PECL translator		
ECLIN2, ECLIN2	6, 5	I	ECL-compatible intpus for ECL-to-PECL translator		
PECLOUT2, PECLOUT2	20, 19	0	PECL-compatible otuputs from ECL-to-PECL translator		
PECLIN1, PECLIN1	17, 16	I	PECL-compatible inputs fro PECL-to-ECL translator		
ECLOUT1, ECLOUT1	8, 9	0	ECL-compatible outputs from PECL-to-ECL translator		
PECLIN2, PECLIN2	15, 14	I	PECL-compatible inputs for PECL-to-ECL translator		
ECLOUT2, ECLOUT2	10, 11	0	ECL-compatible outputs from PECL-to-ECL translator		
GND	7,12,13,18		Ground (0-V reference)		
VCC	1,4,21,24		Supply voltage		

absolute maximum rating over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)
Input voltage range: ECL
PECL 0 V to 7 V
Operating free-air temperature range, T _A 40° C to 85°C
Storage temperature range, T _{sto} –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

recommended operating conditions

		MIN	NOM	MAX	UNIT		
Vcc	Supply voltage		4.75	5	5.25	V	
VIH	High-level input voltage	ECL (see Note 2)	-1.165		-0.88	V	
	nigri-level iriput voltage	PECL (see Note 2)	V _{CC} -1.165	,	√CC-0.88		
VIL	Low-level input voltage	ECL (see Note 2)	-1.81		-1.475	V	
		PECL (see Note 2)	V _{CC} -1.81	V	CC-1.475	V	
TA	Operating free-air temperature		-40		85	°C	

NOTE 2. The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic-level voltages only.

TNETA1545 DUAL DIFFERENTIAL PSEUDO-ECL TO ECL TRANSLATORS AND DUAL DIFFERENTIAL ECL TO PSEUDO-ECL TRANSLATORS

SDNS005B - SEPTEMBER 1993 - REVISED OCTOBER 1995

electrical characteristics over recommended operating free-air temperature range

	PARAMETER			TEST CONDITIONS		MAX	UNIT	
Vari	High-level	ECLOUT1, ECLOUT1, ECLOUT2	V _{CC} = 4.75 V,	See Note 3	-1.025	-0.88	٧	
VOH	output voltage	PECLOUT1, PECLOUT1, PECLOUT2	$V_{CC} = 4.75 \text{ V},$	See Note 4	V _{CC} –1.025	V _{CC} -0.84	V	
	Low-level output voltage	ECLOUT1, ECLOUT1, ECLOUT2, ECLOUT2	V _{CC} = 4.75 V,	See Notes 2 and 3	-1.81	-1.62	V	
VOL		PECLOUT1, PECLOUT1, PECLOUT2	$V_{CC} = 4.75 \text{ V},$	See Note 4	V _{CC} -1.85	V _{CC} -1.62	V	
ΊΗ	High-level input current	PECLIN1, PECLIN1, PECLIN2	V _{CC} = 5.25 V,	V _I = 4.45 V		50	μА	
		ECLIN1, ECLIN1, ECLIN2, ECLIN2	V _{CC} = 5.25 V,	V _I = -0.88 V		-1.5	mA	
¹ı∟	Low-level input current	PECLIN1, PECLIN1, PECLIN2	V _{CC} = 5.25 V,	V _I = 3.35 V		50	μА	
		ECLIN1, ECLIN1, ECLIN2, ECLIN2	V _{CC} = 5.25 V,	V _I = -1.81 V		-2.5	mA	
loo	Supply current		$V_{CC} = 5.25 \text{ V},$	See Note 5		75	mA	
lcc	Cuppiy Current		$V_{CC} = 5.25 \text{ V},$	See Note 6		125	111/5	

NOTES: 2. The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic-level voltages only.

- 3. These outputs are terminated through a 50- Ω resistor to -2 V.
- 4. These outputs are terminated with a 50- Ω resistor to V_{CC}-2 V.
- 5. All outputs open
- 6. ECLOUT1, ECLOUT2, ECLOUT2 terminated with a 50-Ω resistor to -2 V. PECLOUT1, PECLOUT1, PECLOUT2, PECLOUT2 terminated with a 50-Ω resistor to V_{CC}-2 V.

switching charactertistics over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.25 V

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
f _{max}			250		MHz
^t PLH	ECLIN/ECLIN or PECLIN/PECLIN	PECLOUT/PECLOUT or ECLOUT/ECLOUT	1.5	4	ns
^t PHL	ECLIN/ECLIN or PECLIN/PECLIN	PECLOUT/PECLOUT or ECLOUT/ECLOUT	1.5	4	ns

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated