捷多邦,专业PCB打样工厂

查询TD210N06KOF供应商 TT 210 N, TD 210 N, DT 210 N

Elektrische Eigenschaften **Electrical properties** Höchstzulässige Werte Maximum rated values Periodische Vorwärts- und repetitive peak forward off-state $t_{vj} = -40$ °C ... $t_{vj max}$ V_{DRM}, V_{RRM} 600, 800 Rückwärts-Spitzensperrspannung 1000, 1200 V and reverse voltages V 1400, 1600 1800 V Vorwärts-Stoßspitzenspannung non repetitive peak $t_{vi} = -40^{\circ}C...t_{vj \text{ max}}$ $V_{DSM} = V_{DRM}$ forward off-state voltage non repetitive peak ٧ Rückwärts-Stoßspitzenspannung + 100 $t_{vj} = + 25^{\circ}C...t_{vj \text{ max}}$ $V_{RSM} = V_{RRM}$ reverse voltage Durchlaßstrom-Grenzeffektivwert RMS on-state current 410 Α I_{TRMSM} Dauergrenzstrom average on-state current t_C = 85°C 210 Α I_{TAVM} $t_C = 73^{\circ}C$ 261 Α Stoßstrom-Grenzwert surge current $t_{vi} = 25^{\circ}C, t_{o} = 10 \text{ ms}$ 6600 Α ITSM $t_{vj} = t_{vj \text{ max}}, t_p = 10 \text{ ms}$ 5800 Α ∫i²dt Grenzlastintegral ∫i²dt-value 218000 A2s $t_{vj} = 25$ °C, $t_p = 10 \text{ ms}$ $t_{vj} = t_{vj \text{ max}}, t_p = 10 \text{ ms}$ 168000 A2s Kritische Stromsteilheit critical rate of rise of on-state current $v_D \leq 67\% \ V_{DRM}, \ f_o = 50 \ Hz$ (di/dt)_{cr} 150 A/µs $v_L = 10 \text{ V}, i_{GM} = 1 \text{ A}, di_G/dt = 1 \text{ A}/\mu \text{s}$ Kritische Spannungssteilheit critical rate of rise of off-state voltage $t_{v_j} = t_{v_j \text{ max.}}, v_D = 67\% V_{DRM}$ (dv/dt)_{cr} 1000 V/µs Charakteristische Werte Characteristic values Durchlaßspannung on-state voltage $t_{vj} = t_{vj\;max},\, i_T = 700\;A$ max. 1,65 V Vт Schleusenspannung threshold voltage $V_{T(TO)}$ $t_{v_j} = t_{v_j \text{ max}}$ Ersatzwiderstand slope resistance $0.85 \text{ m}\Omega$ \textbf{r}_{T} $t_{vj} = t_{vj \, max}$ Zündstrom gate trigger current $t_{vj} = 25^{\circ}C, \ v_D = 6 V$ max. 200 mΑ IGT $t_{vj} = 25^{\circ}C, \ v_D = 6 \ V$ Zündspannung gate trigger voltage 2 ٧ V_{GT} max. Nicht zündender Steuerstrom gate non trigger current 10 $t_{vj} = t_{vj \text{ max}}, v_D = 6 \text{ V}$ I_{GD} max. mΑ Nicht zündende Steuerspannung gate non trigger voltage 0.2 V $t_{vj} = t_{vj\;max},\, v_D = 0.5\;V_{DRM}$ V_{GD} max. holding current 300 Haltestrom $t_{vi} = 25^{\circ}C, \ v_D = 6 \text{ V}, \ R_A = 5 \ \Omega$ I_{H} max. mΑ latching current Einraststrom $t_{v_1} = 25^{\circ}\text{C}, \ v_D = 6 \text{ V}, \ R_{GK} \ge 10 \ \Omega$ Iر max. 1.2 Α $i_{GM} = 1 A_1 di_G/dt = 1 A/\mu s$, $t_0 = 20 \mu s$ forward off-state and Vorwärts- und Rückwärtsmax. 50 mA $t_{v_j} = t_{v_j \text{ max}}, v_D = V_{DRM}, v_R = V_{RRM}$ i_D , i_R Sperrstrom reverse currents Zündverzug gate controlled delay time $t_{vj} = 25$ °C, $i_{GM} = 1$ A, $di_{G}/dt = 1$ A/ μ s max. 3 μs tad Freiwerdezeit circuit commutated turn-off time siehe Techn, Erl./see Techn, Inf. typ. 200 IIS Isolations-Prüfspannung insulation test voltage RMS, f = 50 Hz, t = 1 min 3 k۷ VISOL Thermische Eigenschaften Thermal properties Innerer Wärmewiderstand thermal resistance, ⊕ = 180°el, sinus: pro Modul/per module R_{thJC} max. 0,065°C/W 0.13 °C/W junction to case max. pro Zweig/per arm DC: pro Modul/per module max. 0,062°C/W 0,124°C/W pro Zweig/per arm max. 0,02 °C/W Übergangs-Wärmewiderstand thermal resistance. pro Modul/per module R_{thCK} max. case to heatsink 0,04 °C/W pro Zweig/per arm max. Höchstzul. Sperrschichttemperatur max, junction temperature 125°C - 40°C ...+125°C Betriebstemperatur operating temperature t_{c op} Lagertemperatur storage temperature -40°C...+130°C Mechanische Eigenschaften Mechanical properties Si-pellets with pressure contact Si-Elemente mit Druckkontakt Innere Isolation internal insulation AIN Anzuasdrehmomente tightening torques mechanische Befestigung mounting torque Toleranz/tolerance ± 15% M1 6 Nm elektrische Anschlüsse terminal connection torque M2 12 Nm Toleranz/tolerance + 5%/- 10% Gewicht weight G typ. 800 g Kriechstrecke creepage distance 17 mm

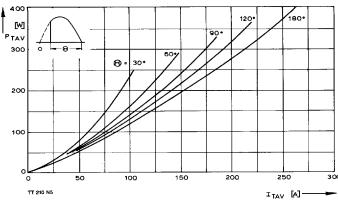
f = 50 Hz

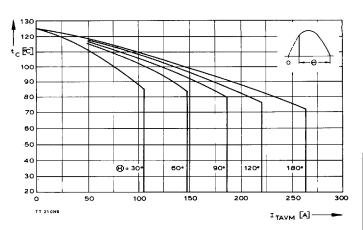
5 · 9,81 m/s²

8

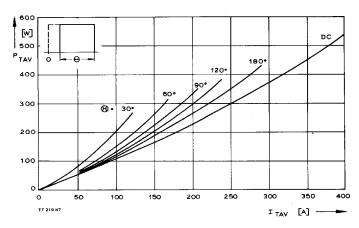
Diese Module können auch mit gemeinsamer Anode oder gemeinsamer Kathode geliefert werden. These modules can also be supplied with common anode or common cathode.

vibration resistance

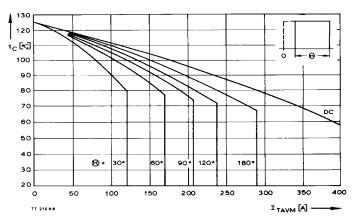

outline

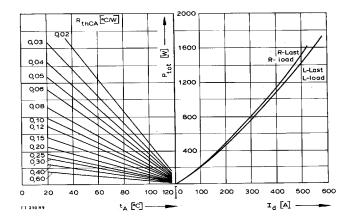

Schwingfestigkeit

Maßbild

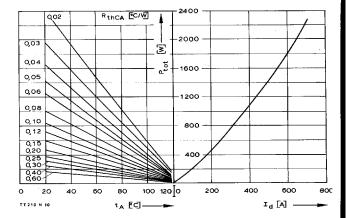


Bild/Fig. 1
Durchlaßverlustleistung eines Zweiges/On-state power loss per arm P_{TAV}


Parameter: Stromflußwinkel/current conduction angle Θ


Bild/Fig. 2 Höchstzulässige Gehäusetemperatur t_{C} in Abhängigkeit vom Zweigstrom Maximum allowable case temperature t_{C} versus current per arm

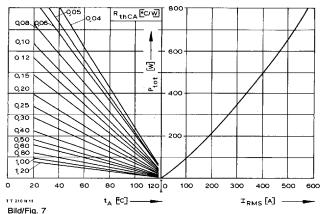
Bild/Fig. 3 Durchlaßverlustleistung eines Zweiges/On-state power loss per arm P_{TAV} Parameter: Stromflußwinkel/current conduction angle Θ


Bild/Fig. 4 Höchstzulässige Gehäusetemperatur $t_{\mathbb{C}}$ in Abhängigkeit vom Zweigstrom Maximum allowable case temperature $t_{\mathbb{C}}$ versus current per arm

Bild/Fig. 5 B2 — Zweipuls-Brückenschaltung/Two-pulse bridge circuit Höchstzulässiger Ausgangsstrom I_d in Abhängigkeit von der Umgebungstemperatur t_a .

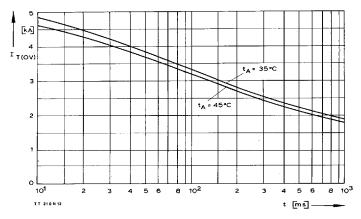
Maximum allowable output current I_d versus ambient temperature t_A.

Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/
thermal resistance case to ambient R_{thCA}


Bild/Fig. 6 B6 – Sechspuls-Brückenschaltung/Six-pulse bridge circuit Höchstzulässiger Ausgangsstrom I₀ in Abhängigkeit von der Umgebungstemperatur t₀.

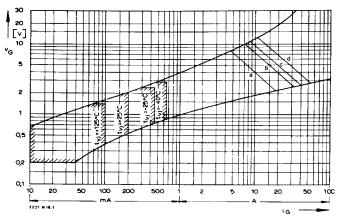
Maximum allowable output current I_d versus ambient temperature t_A.

Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/
thermal resistance case to ambient R_{thCA}


61E D ■ 3403297 0001120 196 ■ UPEC

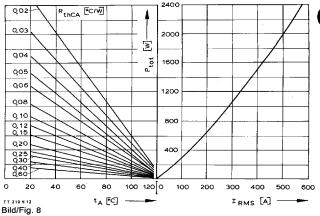
TT 210 N, TD 210 N, DT 210 N

W1C – Einphasen-Wechselwegschaltung/Single-phase inverse parallel circuit Höchstzulässiger Strom I_{RMS} in Abhängigkeit von der Umgebungstemperatur t_A. Maximum allowable current I_{RMS} versus ambient temperature t_A. Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/

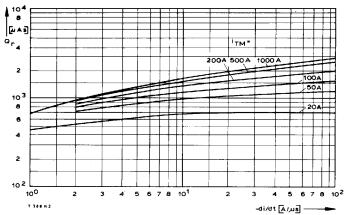

Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/ thermal resistance case to ambient R_{thCA}

Bild/Fig. 9

Grenzstrom je Zweig I $_{\text{T(OV)M}}$ bei Luftselbstkühlung, $t_A=45^{\circ}\text{C}$ und verstärkter Luftkühlung, $t_A=35^{\circ}\text{C}$, Kühlkörper KP0,33S, $v_{\text{RM}}=0.8~V_{\text{RRM}}$. Limiting overload on-state current per arm I $_{\text{T(OV)M}}$ at natural ($t_A=45^{\circ}\text{C}$) and forced ($t_A=35^{\circ}\text{C}$) cooling, heatsink type KP0.33S, $v_{\text{RM}}=0.8~V_{\text{RRM}}$. a – Belastung nach Leerlauf/current surge under no-load conditions

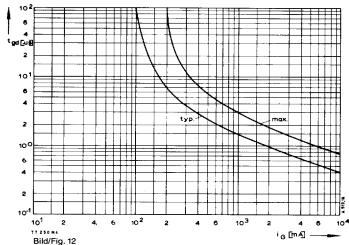

b – Belastung nach Betrieb mit Dauergrenzstrom I_{TAVM}
Current surge occurs during operation at limiting mean on-state current rating I_{TAVM}

Bild/Fig. 11


Zündbereich und Spitzensteuerleistung bei $v_D=6\ V$. Gate characteristic and peak gate power dissipation at $v_D=6\ V$.

Parameter:		а	b	С	d
Steuerimpulsdauer/Pulse duration t _g	duration t _g [ms] 10		1	0,5	0,1
Höchstzulässige Spitzensteuerleistung/					
Maximum allowable peak gate power	[W]	40	80	100	150

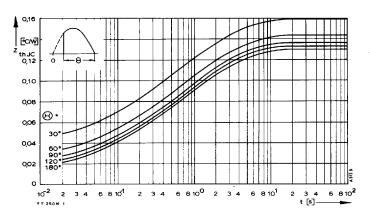
W3C – Dreiphasen-Wechselwegschaltung/Three-phase inverse parallel circuit Höchstzulässiger Strom je Phase I_{RMS} in Abhängigkeit von der Umgebungstemperatur t_Δ.


Maximum allowable current per phase I_{RMS} versus ambient temperature t_{A} . Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/ thermal resistance case to ambient H_{thCA}

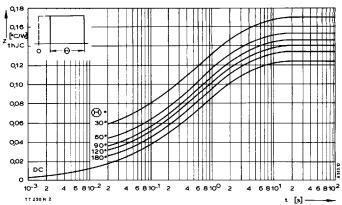
Bild/Fig. 10

Sperrverzögerungsladung Q_r in Abhängigkeit von der abkommutierenden Stromsteilheit -di/dt bei $t_{vj} = t_{vj}$ m_{ax} , $v_R = 0.5$ v_{RRM} , $v_{RM} = 0.8$ v_{RRM} . Der angegebene Verlauf ist gültig für 90% aller Elemente. Recovered charge versus the rate of decay of the forward on-state current -di/dt at $t_{vj} = t_{vj}$ m_{ax} , $v_R = 0.5$ v_{RRM} . $v_{RM} = 0.8$ v_{RRM} . These curves are valid for 90% of all devices.

Parameter: Durchlaßstrom i_{TM}/On-state current i_{TM}



Zündverzug/Gate controlled delay time t_{gd} , DIN 41787, $t_a=1~\mu s,~t_{vj}=25^{\circ}C.$


EUPEC

61E D ■ 3403297 0001121 022 ■UPEC

TT 210 N, TD 210 N, DT 210 N

Bild/Fig. 13 Transienter innerer Wärmewiderstand je Zweig $Z_{(th)JC}$. Transient thermal impedance per arm $Z_{(th)JC}$, junction to case.

Bild/Fig. 14 Transienter innerer Wärmewiderstand je Zweig Z $_{\text{(th),IC}}$. Transient thermal impedance, junction to case, per arm Z $_{\text{(th),IC}}$.

Pos. n	1	2	3	4	5
R _{thn} [°C/W]	0,0031	0,0097	0,0257	0,0429	0,0426
τ _n [s]	0,0009	0,008	0,11	0,61	3,06

$$Z_{thJC} = \sum_{n=1}^{n_{max}} R_{thn} (1-e^{t/\tau_n})$$

Transienter Wärmewiderstand Z_{thJC} pro Zweig für DC. Transient thermal impedance Z_{thJC} per arm for DC.