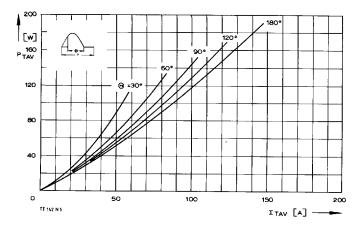
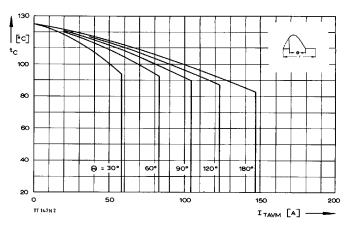
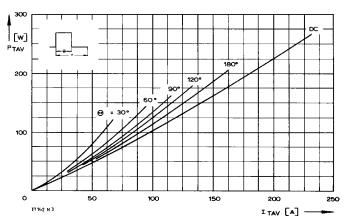
查询TD142N06KOF供应商

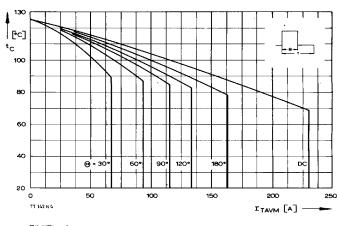
TT 142 N, TD 142 N, DT 142 N

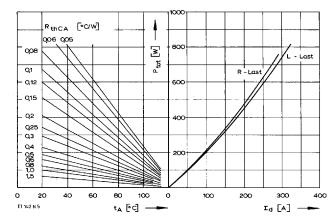

öchstzulässig <mark>e Werte</mark>	Maximum rated values					
Periodische <mark>Vorwärts- und</mark>	repetitive peak forward off-state	$t_{vj} = -40^{\circ}\text{C} \dots t_{vj \text{ max}}$	V_{DRM}, V_{RRM}	600,		V
Rückwärts-S <mark>pitzenspe</mark> rrspannung	and reverse voltages			1000,		V
				1400,	1600	V
Vorwärts-Stoßspitzenspannung	non repetitive peak	$t_{vj} = -40^{\circ}C \dots t_{vj \text{ max}}$	$V_{DSM} = V_{DRM}$			
	forward off-state voltage					
Rückwärts-Stoßspitzenspannung	non repetitive peak	t _{vj} = + 25°Ct _{vj max}	V _{RSM} = V _{RRM}	+	100	V
	reverse voltage	- L-	M.A.			
Durchlaßstrom-Grenzeffektivwert	RMS on-state current		ITRMSM		230	Α
Dauergrenzstrom	average on-state current	t _C = 85°C	I _{TAVM}		142	Α
Stoßstrom-Grenzwert	surge current	$t_{vj} = 25^{\circ}C$, $t_p = 10 \text{ ms}$	I _{TSM}		4800	Α
	-Z-TD 1/20	$t_{vi} = t_{vi \text{ max}}, t_p = 10 \text{ ms}$			4100	Α
Grenzlastintegral	∫i²dt-value	$t_{v_i} = 25$ °C, $t_p = 10$ ms	∫i²dt	11:	5000	A^2s
	023	$t_{vj} = t_{vj \text{ max}}, t_p = 10 \text{ ms}$		8-	4000	A^2s
Kritische Stromsteilheit	critical rate of rise of on-state current	$v_D \le 67\% V_{DRM}, f_o = 50 \text{ Hz}$	(di/dt) _{cr}		150	A/us
Kittisene otromstemen	Children of the of the state surface	$V_L = 10 \text{ V, i}_{GM} = 0.6 \text{ A, dig/dt} = 0.6 \text{ A/}\mu\text{s}$	(701			
Kritische Sp <mark>annungssteilheit</mark>	critical rate of rise of off-state voltage	$t_{vi} = t_{vi \text{ max}}, v_D = 67\% \text{ V}_{DRM}$	(dv/dt) _{cr}		1000	V/μs
sire oparitaligottomiot	, and the second second	of duest, o . Dum	1			
harakteristische Werte	Characteristic values					
	on-state voltage	t -t i- = 500 A	V _T	max.	1,56	V
Durchlaßspannung	_	$t_{vj} = t_{vj \text{ max}}, i_T = 500 \text{ A}$		max.	0,9	v
Schleusenspannung	threshold voltage	$t_{vj} = t_{vj \text{ max}}$	V _{T(TO)}		1,1	mΩ
Ersatzwiderstand	slope resistance	$t_{vj} = t_{vj max}$	r _T			
Zündstrom	gate trigger current	$t_{vj} = 25^{\circ}C, \ v_D = 6 \text{ V}$	GT	max.		mΑ
Zündspannung	gate trigger voltage	$t_{vj} = 25^{\circ}C, \ v_D = 6 \ V$	V _{GT}	max.	1,4	٧
Nicht zündender Steuerstrom	gate non trigger current	$t_{vj} = t_{vj \text{ max}}, v_D = 6 \text{ V}$	IGD	max.	10	mA
Nicht zündende Steuerspannung	gate non trigger voltage	$t_{vj} = t_{vj \text{ max}}, v_D = 0,5 V_{DRM}$	V_{GD}	max.	0,25	
Haltestrom	holding current	$t_{v_i} = 25^{\circ}C, \ v_D = 6 \text{ V}, \ R_A = 5 \Omega$	1 _H	max.	200	mA
Einraststrom	latching current	$t_{vj} = 25^{\circ}C, \ v_D = 6 \text{ V}, \ R_{GK} \ge 10 \ \Omega$	I _L	max.	800	mΑ
	AN AN AN	$i_{GM} = 0.6 \text{ A}, di_{G}/dt = 0.6 \text{ A}/\mu\text{s}, t_{g} = 20 \mu\text{s}$				
Vorwärts- und Rückwärts-	forward off-state and	$t_{v_i} = t_{v_i \text{ max}}, v_D = V_{DRM}, v_R = V_{RRM}$	i _D , i _R	max.	30	mΑ
Sperrstrom	reverse currents					
Zündverzug	gate controlled delay time	$t_{vi} = 25$ °C, $t_{GM} = 0.6$ A, $dt_{G}/dt = 0.6$ A/ μ s	t _{gd}	max.	3	μs
Freiwerdezeit	circuit commutated turn-off time	siehe Techn. Erl./see Techn. Inf.	ta	typ.	200	μs
Isolations-Prüfspannung	insulation test voltage	RMS, f = 50 Hz, t = 1 min	V _{ISOL}		2,5	kV
					40.0	
hermische Eigenschaften	Thermal properties					
Innerer Wärmewiderstand	thermal resistance.	θ = 180°el, sinus: pro Modul/per module	RthJC	max.	0,110°	C/W
Timerer Warmewiderstand	junction to case	pro Zweig/per arm	11100	max.	0,220°	C/W
	Junetion to case	DC: pro Modul/per module		max.	0,106°	
	4711	pro Zweig/per arm		max.	0,212°	
		pro zweigrper arm		max.	0,2.2	
The supplier NAIS was assisted water and	thormal registeres	nya Madul/naz madula	R _{thCK}	max.	0,03 °	CW
Übergangs-Wärmewiderstand	thermal resistance,	pro Modul/per module	1 thCK	max.	,	
	case to heatsink	pro Zweig/per arm		max.	0,00	C/ ¥ ¥
					- 1/	2500
Höchstzul. Sperrschichttemperatur	max. junction temperature		t _{vj max}	400		25°C
Betriebstemperatur	operating temperature		t _{c op}		C+12	
Lagertemperatur	storage temperature		t _{stg}	- 40°	C+13	30°C
Mechanische Eigenschaften	Mechanical properties		- 100	-07	50	
Si-Elemente mit Druckkontakt	Si-pellets with pressure contact		W W W			
Innere Isolation	internal insulation	ATTENDED TO STATE OF				AIN
Anzugsdrehmomente	tightening torques					
mechanische Befestigung	mounting torque	Toleranz/tolerance ± 15%	M1			Nm
elektrische Anschlüsse	terminal connection torque	Toleranz/tolerance + 5%/- 10%	M2		ϵ	Nm
elektrische Anschlusse			t -			100
Gewicht	weight	MA.	G		typ. 3	nog
Gewicht	weight creepage distance	NA .	G			mm
	weight creepage distance vibration resistance	f = 50 Hz	G			mm

Diese Modul<mark>e können auch mit gemeinsamer Anode oder gemeinsamer Kathode geliefert werden.</mark> These modules can also be supplied with common anode or common cathode.

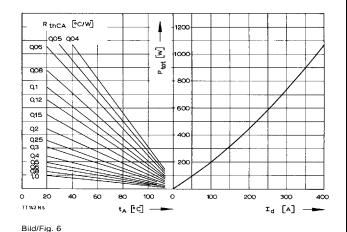

Recognized by UNDERWRITERS LABORATORIES INC.


TT 142 N, TD 142 N, DT 142 N


Bild/Fig. 1 Durchlaßverlustleistung eines Zweiges/On-state power loss per arm P_{TAV} Parameter: Stromflußwinkel/current conduction angle Θ


Bild/Fig. 2 Höchstzulässige Gehäusetemperatur t_{C} in Abhängigkeit vom Zweigstrom Maximum allowable case temperature t_{C} versus current per arm

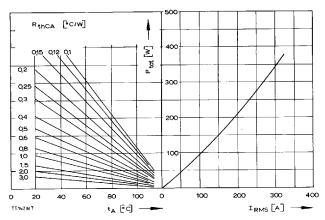
Bild/Fig. 3 Durchlaßverlustleistung eines Zweiges/On-state power loss per arm P_{TAV} Parameter: Stromflußwinkel/current conduction angle Θ



Bild/Fig. 4
Höchstzulässige Gehäusetemperatur t_C in Abhängigkeit vom Zweigstrom Maximum allowable case temperature t_C versus current per arm

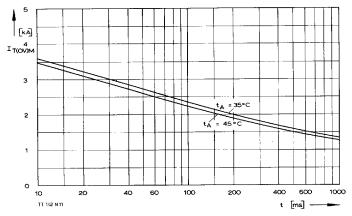
Bild/Fig. 5 B2 – Zweipuls-Brückenschaltung/Two-pulse bridge circuit Höchstzulässiger Ausgangsstrom I_d in Abhängigkeit von der Umgebungstemperatur t_A.

Maximum allowable output current I_d versus ambient temperature t_A . Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/thermal resistance case to ambient R_{thCA}

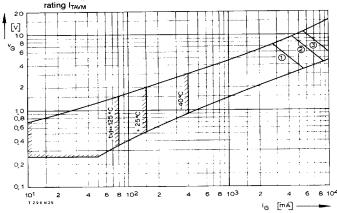

Bl6 – Sechspuls-Brückenschaltung/Six-pulse bridge circuit Höchstzulässiger Ausgangsstrom I_d in Abhängigkeit von der Umgebungstemperatur $t_{\rm A}$.

Maximum allowable output current I_d versus ambient temperature t_A.

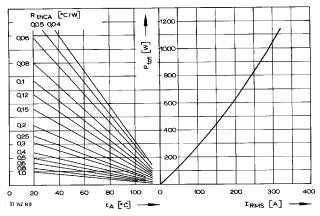
Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/
thermal resistance case to ambient R_{thCA}


61E D ■ 3403297 0001104 T43 ■UPEC

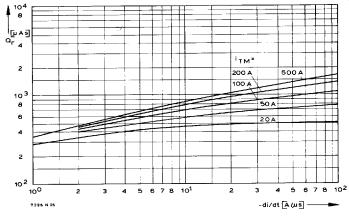
TT 142 N, TD 142 N, DT 142 N


Bild/Fig. 7
W1C – Einphasen-Wechselwegschaltung/Single-phase inverse parallel circuit
Höchstzulässiger Strom I_{RMS} in Abhängigkeit von der Umgebungstemperatur t_A.
Maximum allowable current I_{RMS} versus ambient temperature t_A.

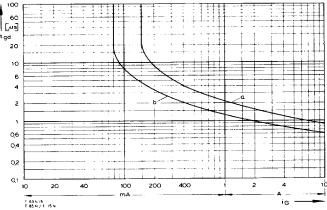
Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/ thermal resistance case to ambient RtncA


Bild/Fig. 9 Grenzstrom je Zweig $I_{T(OV)M}$ bei Luftselbstkühlung, $t_A=45^{\circ}C$ und verstärkter Luftkühlung, $t_A=35^{\circ}C$, Kühlkörper KP 0,33 S, $v_{RM}=0.8$ V_{RRM} . Limiting overload on-state current per arm $I_{T(OV)M}$ at natural ($t_A=45^{\circ}C$) and forced ($t_A=35^{\circ}C$) cooling, heatsink type KP 0.33 S, $v_{RM}=0.8$ $v_{RRM}=0.8$ v_{RRM}

b – Belastung nach Betrieb mit Dauergrenzstrom I_{TAVM}
Current surge occurs during operation at limiting mean on-state current


Bild/Fig. 11 Zündbereich und Spitzensteuerleistung bei $v_D=6~V$. Gate characteristic and peak gate power dissipation at $v_D=6~V$.

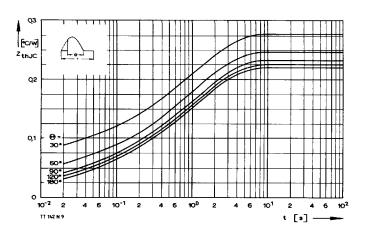
Parameter:			2	3
Steuerimpulsdauer/Pulse duration t _g	[ms]	10	1	0,5
Höchstzulässige Spitzensteuerleistung/	[W]	20	40	60



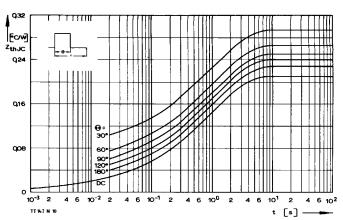
Bild/Fig. 8
W3C – Dreiphasen-Wechselwegschaltung/Three-phase inverse parallel circuit
Höchstzulässiger Strom je Phase I_{RMS} in Abhängigkeit von der Umgebungstemperatur t_A.

Maximum allowable current per phase I_{RMS} versus ambient temperature t_A. Parameter: Wärmewiderstand zwischen Powerblock und Umgebung/ thermal resistance case to ambient R_{thCA}

Bild/Fig. 10 Sperrverzögerungsladung Q_r in Abhängigkeit von der abkommutierenden Stromsteilheit -di/dt bei $t_{sj} = t_{vj \; max}, v_R = 0.5 \; V_{RRM}, v_{RM} = 0.8 \; V_{RRM}$. Der angegebene Verlauf ist gültig für 90% aller Elemente. Recovered charge versus the rate of decay of the forward on-state current -di/dt at $t_{vj} = t_{vj \; max}, v_R = 0.5 \; V_{RRM}, v_{RM} = 0.8 \; V_{RRM}$. These curves are valid for 90% of all devices. Parameter: Durchlaßstrom i_{TM}/On -state current i_{TM}



Bild/Fig. 12 Zündverzug/Gate controlled delay time t_{gd} , DIN 41787, $t_a=1$ µs, $t_{vj}=25^{\circ}\mathrm{C}$. a – äußerster Verlauf/limiting characteristic b – typischer Verlauf/typical characteristic


EUPEC

61E D ■ 3403297 0001105 98T ■UPEC

TT 142 N, TD 142 N, DT 142 N

Bild/Fig. 13 Transienter innerer Wärmewiderstand je Zweig $Z_{(th),JC}$. Transient thermal impedance per arm $Z_{(th),JC}$, junction to case.

Bild/Fig. 14 Transienter innerer Wärmewiderstand je Zweig $Z_{\text{(lh)JC}}$. Transient thermal impedance, junction to case, per arm $Z_{\text{(lh)JC}}$.

Pos. n	1	2	3	4
R _{thn} [°C/W]	0,0094	0,0224	0,0586	0,122
τ _n [s]	0,0014	0,0253	0,267	1,68

$$Z_{thJC} = \sum_{n=1}^{n_{max}} R_{thn} (1-e^{t/\tau_n})$$

Transienter Wärmewiderstand Z_{thJC} pro Zweig für DC. Transient thermal impedance Z_{thJC} per arm for DC.