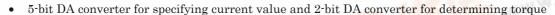
TOSHIBA BICD IC Silicon Monolithic


TB62300FG

Dual Full-Bridge Driver for DC Motor

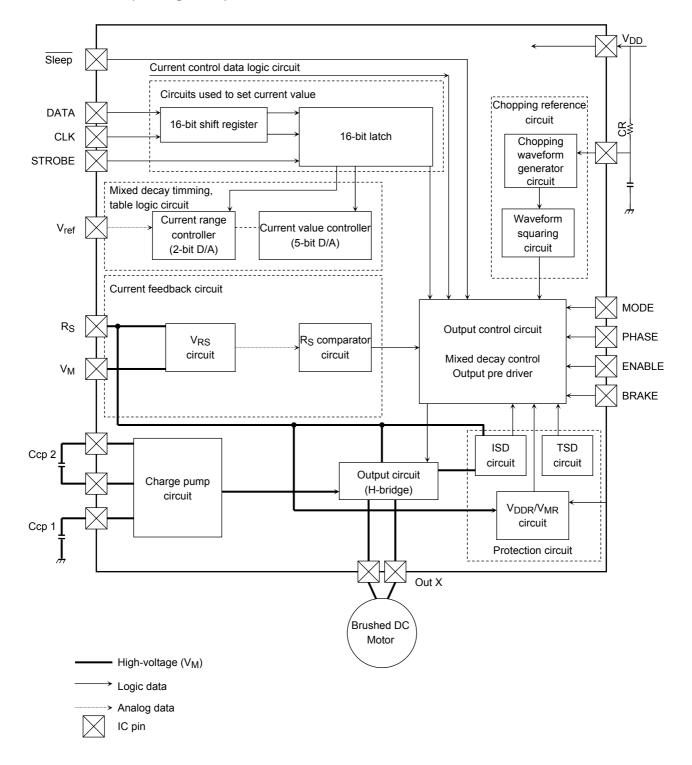
The TB62300FG is a dual brushed DC motors driver IC employing a chopper-based forward/reverse full-bridge mechanism. It controls two brushed DC motors at high precision. The motor supply voltage is up to 40 V and the VDD supply voltage is 5.0 V.

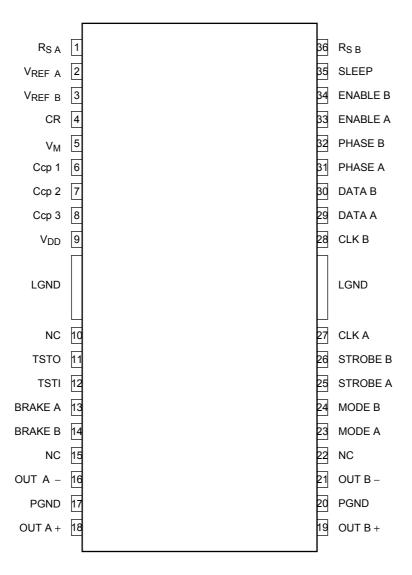
Features

- A single IC can drive two brushed DC motors.
- Monolithic Bi-CMOS IC
- Low ON-resistance (R_{on}) = 0.3 Ω (T_i = 25°C at 2.0 A typ.)
- Selectable current control: PWM current control using the PHASE pin or serial control

- MIXED DECAY mode enables specification of current decay rate in four steps.
- Self-oscillation chopping frequency with external resistor and capacitor
- High-speed chopping at 100 kHz or higher
- ISD, TSD, and POR (VDD/VM) protection circuits
- Charge pump circuit (two external capacitors) for driving output
- 36-pin package: HSOP36 with heat sink
- Output voltage: 40 V (max)
- Output current: 2.5 A max (in steady-state phase) or 8 A max (pulsed output)

Note: The values specified in this document are designed values, which are not guaranteed.





Block Diagram

1. Overview (for single axis)

Pin Assignment

Note: When designing a ground line, make sure that all ground pins are connected to the same ground trail and remember to take heat radiation into account.

When pins that are used to toggle between modes are controlled by a switch, pull up or down the pins to avoid high impedance.

The IC may be destroyed due to short circuit between outputs, to supply, or to ground. Design output lines, V_{DD} (V_{M}) lines and ground lines with great care.

3

When power supply pins (V_M, R_S, OUT, P-GND, V_{SS} and C_{CP}) that are exposed to high current, or logic input pins are not connected correctly, excessive current or malfunction may cause the IC to break down.

Pin Description

Pin Number	Symbol	Function	Remarks
1	R _{S A}	A-ch output power supply pin (current detection pin)	Reference pin for A-axis supply voltage
2	V _{REF A}	A-ch reference voltage input pin	Reference power supply pin for A-axis current
3	V _{REF B}	B-ch reference voltage input pin	Reference power supply pin for B-axis current
4	CR	External chopping reference pin	Pin used to set the chopping frequency
5	V _M	Supply voltage monitor pin	Monitor (reference) pin for motor supply voltage
6	Ccp 1	Charge pump capacitor pin	Pin for connecting a charge pump capacitor
7	Ccp 2	Charge pump capacitor pin	Pin for connecting a charge pump capacitor
8	Ccp 3	Charge pump capacitor pin	Pin for connecting a charge pump capacitor
9	V_{DD}	Logic power supply	Logic supply current input pin
10	NC	NC pin	Note: Usually, leave this pin open.
11	TSTO	Test pin (usually not used)	Note: Usually, leave this pin open.
12	TSTI	Test pin (usually not used)	Note: Usually, connect this pin to LGND.
13	BRAKE A	A-ch brake mode pin	Forced brake mode
14	BRAKE B	B-ch brake mode pin	Forced brake mode
15	NC	NC pin	Note: Usually, leave this pin open.
16	OUT A –	A-ch negative output pin	A – output pin
17	PGND	V _M ground	Power ground
18	OUT A +	A-ch positive output pin	A + output pin
19	OUT B +	B-ch positive output pin	B + output pin
20	PGND	V _M ground	Power ground
21	OUT B –	B-ch negative output pin	B – output pin
22	NC	NC pin	Note: Usually, leave this pin open.
23	MODE A	A-ch data mode switching pin	Pin used to toggle between serial input and PWM control
24	MODE B	B-ch data mode switching pin	Pin used to toggle between serial input and PWM control
25	STROBE A	A-ch latch signal input pin	Data input: latched on rising edge
26	STROBE B	B-ch latch signal input pin	Data input: latched on rising edge
27	CLK A	A-ch clock input pin	Data input: referred to rising edge
28	CLK B	B-ch clock input pin	Data input: referred to rising edge
29	DATA A	A-ch data input pin	Data input:
30	DATA B	B-ch data input pin	Data input:
31	PHASE A	A-ch phase switching pin	PWM signal input pin:
32	PHASE B	B-ch phase switching pin	PWM signal input pin::
33	ENABLE A	A-ch output forced OFF pin	L: output stopped
34	ENABLE B	B-ch output forced OFF pin	L: output stopped
35	SLEEP	Operation stopped mode	Internal logic cleared and charge pump stopped
36	R _{S B}	B-ch output power supply pin (current detection pin)	Reference pin for B-axis supply voltage
FIN1	LGND	Logic ground	Logic ground
FIN2	LGND	Logic ground	Logic ground

Pin Description (Supplementary)

Pull-up/pull-down status and operation within the IC for input pins

Pin Number	Symbol	Internal Pull-up/down	Output Operation at High	Output Operation at Low
10	NC	Open	Does not affect normal operation of the IC.	Does not affect normal operation of the IC.
11	тѕто	Output pin (usually low)	Does not affect normal operation of the IC (with the same withstand voltage as for V _{DD}).	Does not affect normal operation of the IC.
12	TSTI	Input pin (no pull-up or down)	Toshiba test mode	Normal operation mode
13	BRAKE A	No pull-up or down		
14	BRAKE B	No pull-up or down		
15	NC	Open	Does not affect normal operation of the IC.	Does not affect normal operation of the IC.
22	NC	Open	Does not affect normal operation of the IC.	Does not affect normal operation of the IC.
23	MODE A	No pull-up or down		
24	MODE B	No pull-up or down		
25	STROBE A	No pull-up or down		
26	STROBE B	No pull-up or down		
27	CLK A	No pull-up or down		
28	CLK B	No pull-up or down		
29	DATA A	No pull-up or down		
30	DATA B	No pull-up or down		
31	PHASE A	No pull-up or down		
32	PHASE B	No pull-up or down		
33	ENABLE A	No pull-up or down		
34	ENABLE B	No pull-up or down		
35	SLEEP	Pull-down with a 50-kΩ resistor		

Truth Table (1)

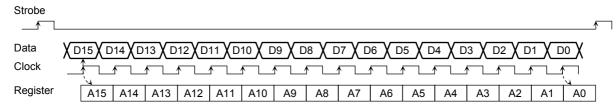
Pin logic overview

Pin Number	Symbol	Function	Logic
23	MODE A	A-ch data mode switching pin	H : Serial signal input control L : PWM control
24	MODE B	B-ch data mode switching pin	Note: When PWM control is selected, serial data bits D0 to D6 are valid while D7 to D13 are invalid.
25	STROBE A	A-ch latch signal input pin	H : Latched on rising edge
26	STROBE B	B-ch latch signal input pin	L : Pass-through
31	PHASE A	A-ch phase switching pin	H : Positive phase
32	PHASE B	B-ch phase switching pin	L : Negative phase
35	SLEEP	Operation stopped mode	H : Sleep released L : Sleep state All internal circuits, including charge pumps, are stopped.
33	ENABLE A	A-ch output forced OFF pin	H : Output enabled Output transistors turned on
34	ENABLE B	B-ch output forced OFF pin	L : Output disabled Output transistors turned off
13	BRAKE A	A-ch brake mode pin	H : Brake applied PHASE and ENABLE pins disabled
14	BRAKE B	B-ch brake mode pin	L: Brake released

Truth Table (2)

Overall logic

		Serial	Status			
SLEEP	ENABLE A/B	BRAKE A/B	MODE A/B	PHASE A/B	PHASE	
0	Х	Х	Х	Х	Х	Sleep mode
1	0	Х	Х	Х	Х	Disable mode
	1	1	Х	Х	Х	Breake ON
		0	0	1	Х	Forward
			0	0	Х	Reverse
			1	Х	1	Forward
			1	Х	0	Reverse


IC State for Each Function

Function	Internal Logic	Output	Charge Pump	OSC	Recovery Time
SLEEP	Reset	OFF	OFF	OFF	t _{ONG} = 2.0 ms (typ.)/4.0 ms (max)
ENABLE	Maintained	OFF	Operating	Operating	N/A
POR	Reset	OFF	OFF	OFF	t _{ONG} = 2.0 ms (typ.)/4.0 ms (max)
ISD	Reset	OFF	OFF	OFF	t _{ONG} = 2.0 ms (typ.)/4.0 ms (max)
TSD	Reset	OFF	OFF	OFF	t _{ONG} = 2.0 ms (typ.)/4.0 ms (max)

Serial Input Signals

Order of data input

Data Bit	Name	Function	Initial Value	Initial State	When PWM is Operating	
0	TBlank 0		0			
1	TBlank 1	Set blanking time to prevent false detection due to noise	1	$1 \div fchop \div 16 \times 7$	Enabled	
2	TBlank 2		1			
3	Torque 0	Sot ourrent range	0	25%	Enabled	
4	Torque 1	Set current range	0	2576	⊨nabled	
5	Decay mode 0	Set decay mode	1	Mixed decay mode	Enabled	
6	Decay mode 1	Set decay mode	0	(37.5%)		
7	Current 0		1			
8	Current 1		1	100%		
9	Current 2	Set current	1		Disabled	
10	Current 3		1			
11	Current 4		1			
12	Phase	Switch phase	0	Negative	Disabled	
13	_	_	_	_	_	
14	_	_	_	_	_	
15	_	_	_	_	_	

Notes on TBlank Setting

When using PWM control and serial control simultaneously, constant-current chopping may be disabled depending on the TBlank setting. Using constant-current chopping requires the following phase width in Fast Decay mode:

(TBlank setting + 2/fcr) × 2

Setting Table (1): D0, D1, D2

Blanking time settings

Data Bit	Name	Function	TBlank 2	TBlank 1	TBlank 0	Setting TBlank (typ.)
0	TBlank 0	Set blanking time to prevent	0	0	0	$1 \div f_{Chop} \div 16 \times 1$
1	TBlank 1	false detection due to noise	0	0	1	1 ÷ f _{Chop} ÷ 16 × 2
2	TBlank 2		0	1	0	1 ÷ f _{Chop} ÷ 16 × 3
			0	1	1	$1 \div f_{Chop} \div 16 \times 4$
			1	0	0	$1 \div f_{Chop} \div 16 \times 5$
			1	0	1	$1 \div f_{Chop} \div 16 \times 6$
			1	1	0	$1 \div f_{Chop} \div 16 \times 7$
			1	1	1	$1 \div f_{Chop} \div 16 \times 8$

Setting Table (2): D3, D4

Torque settings

Data Bit	Name	Function	Torque 1	Torque 0	Setting Torque (typ.)
3	Torque 0	Set current range	0	0	25%
4	Torque 1		0	1	50%
			1	0	75%
			1	1	100%

Setting Table (3): D5, D6

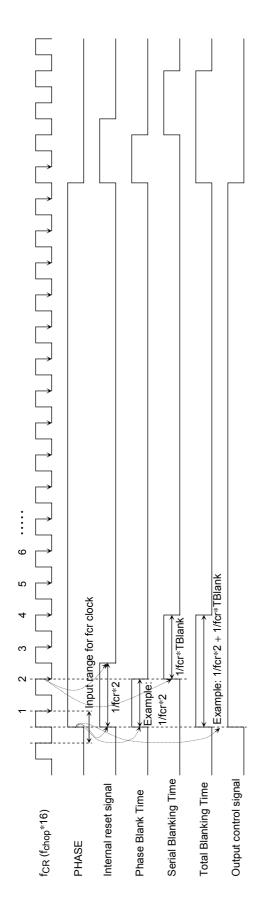
Decay mode settings

Data Bit	Name	Function	Torque Mode 1	Torque Mode 0	Setting Decay Mode
5	Decay mode 0	Set decay mode	0	0	Slow decay mode
6	Decay mode 1		0	1	Mixed decay mode: 37.5%
			1	0	Mixed decay mode: 75.0%
			1	1	Fast decay mode

Setting Table (4): D7, D8, D9, D10, D11

Current settings

Data Bit	Name	Function	Current 4	Current 3	Current 2	Current 1	Current 0	Setting Current
7	Current 0	Set current	0	0	0	0	0	0%
8	Current 1		0	0	0	0	1	3%
9	Current 2		0	0	0	1	0	6%
10	Current 3		0	0	0	1	1	9%
11	Current 4		0	0	1	0	0	12%
			0	0	1	0	1	16%
			0	0	1	1	0	19%
			0	0	1	1	1	22%
			0	1	0	0	0	25%
			0	1	0	0	1	29%
			0	1	0	1	0	32%
			0	1	0	1	1	35%
			0	1	1	0	0	38%
			0	1	1	0	1	41%
			0	1	1	1	0	45%
			0	1	1	1	1	48%
			1	0	0	0	0	51%
			1	0	0	0	1	54%
			1	0	0	1	0	58%
			1	0	0	1	1	61%
			1	0	1	0	0	64%
			1	0	1	0	1	67%
			1	0	1	1	0	70%
			1	0	1	1	1	74%
			1	1	0	0	0	77%
			1	1	0	0	1	80%
			1	1	0	1	0	83%
			1	1	0	1	1	87%
			1	1	1	0	0	90%
			1	1	1	0	1	93%
			1	1	1	1	0	96%
			1	1	1	1	1	100%


Setting Table (5): D12

Phase settings

Data Bit	Name	Function	Phase	Setting Phase
12	Phase	Switch phase	0	Negative
12	Phase		1	Positive

TOSHIBA

PWM Operation

Notes: • fcr is 16 times the fchop frequency.

- · PHASE is an external signal.
- The internal reset signal resets the internal clocks and counters.
 Phase Blank Time is time between either edge of the external PHASE signal and the leading edge of serial blanking time.

Description

The output H bridge is driven by an external PHASE signal.

It, however, also uses the fcr signal, generated with external CR, to generate blanking time and Mixed Decay time. The above logic is configured to handle the two signals, PHASE and fer, which are asynchronous to each other. The logic generates internal reset signal edges from external PHASE edges, resulting in the width equal to two fer cycles.

The fcr-based counter assumes the first fcr falling edge following the PHASE edge as the first count. The maximum phase difference between the PHASE and fcr signals is, therefore, one fcr cycle.

To cover the interval, the logic generates the time between the PHASE signal edge and blanking time start as phase blank time, during which comparison is masked The last stage output is switched by the edge of the external PHASE signal. That means there is an interval of two for cycles before the set blanking time starts. The serial blanking time starts at the second count based on the fcr clock (The first three samples of serial blanking time signal must be 000).

Consequently, the blanking time as viewed from outside the IC is within the range from one fcr cycle (TBlank (000)) to eight fcr cycles (TBlank (111)) + I phase difference between PHASE and fcr (up to two fcr cycles)

off in the same way as in blanking time.

Absolute Maximum Ratings ($T_{opr} = 25$ °C)

Characteristics	Symbol	Test Condition	Rating	Unit
Logic supply voltage	V _{DD}	_	-0.4 to 7.0	V
Maximum output voltage	V _M	_	40	V
Peak output current (Note: preliminary specification)	I _{OUT} (Peak)	t _W ≤ 500 ns	8.0	А
Continuous output current	IOUT (Cont)	_	2.5	Α
Logic input voltage	V _{IN}	_	–0.5 to V _{DD}	V
Current detection pin voltage	V _{RS}	_	V _M ± 4.5 V	V
David disable site		IC alone	1.4	W
Power dissipation	P _D	When mounted on a board (Note)	3.2	W
Operating temperature	T _{opr}	_	-40 to 85	°C
Storage temperature	T _{stg}	_	-55 to 150	°C
Junction temperature	Tj	_	150	°C

Note: When $T_{opr} = 45^{\circ}C$, $T_{j} = 150^{\circ}C$ and $\theta ja = 32^{\circ}C$

Recommended Operating Conditions (Topr = 0 to 85°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Supply voltage (Note 1)	V_{DD}	_	4.5	5.0	5.5	V
Output voltage (Note 1)	V _M	V _{DD} = 5.0 V		24.0	33.0	V
Output current	I _{OUT} (Peak)	$V_M = 33.0 \text{ V}, t_W \le 500 \text{ ns}$	_	6.4	7.2	Α
(Note: preliminary specification)	IOUT (Cont)	V _M = 33.0 V	_	1.5	1.8	Α
Logic input voltage range	V _{IN}	_	0		V_{DD}	V
Clock frequency	f _{CLK}	V _{DD} = 5.0 V	1.0		25.0	MHz
Chopping frequency	f _{chop}	V _{DD} = 5.0 V	20	30	150	kHz
V _{ref} reference voltage	V _{ref}	V _M = 24.0 V, T _{ORQUE} = 100%	2.0	3.0	V_{DD}	V
Current detection pin voltage	V _{RS}	V _{DD} = 5.0 V	0	±1.0	±1.5	V
Junction temperature	Tj	_	_		120	°C
Oscillator capacitor	Cosc	_	_	270	_	pF
Oscillator resistor	Rosc	_	_	3.9		kΩ
Charge pump capacitor A	C _{CPA}	_	_	0.22	_	μF
Charge pump capacitor B	C _{CPB}	_	_	0.022	_	μF
Input rise and fall rate (Note 2)	tri/tfi	_	_	0.1	5.0	μs

Note 1: Do not reduce V_{DD} to 0 V (ground) while V_M voltage is applied. Such an attempt may damage the IC because there is a current path from the V_M pin to V_{DD} pin and the internal logic is undefined when V_{DD} is not applied. Leaving V_{DD} open (Hi-Z) is less likely to damage the IC, although it is not recommended.

Note 2: The circuit configuration of this IC cannot handle extremely slow data input (on pins BREAK A, BREAK B, SLEEP, ENABLE A, ENABLE B, PHASE A, PHASE B, DATA A, DATA B, CLK A, CLK B, STROBE A, STROBE B, MODE A, and MODE B). Applying a slow signal having a period longer than 5 μs may cause the IC to oscillate.

(1) Calculating the current

 $I_{OUT} = 1/3 \times V_{ref}$ (V) × (Torque (%) ÷ R_{RS} (Ω)) × Current (%) where 1/3 is the V_{ref} (GAIN): V_{ref} attenuation ratio.

(2) Calculating the oscillation frequency

 $f_{CR} = 1/(KA) \times (C \times R + KB \times C)) \times [Hz]$

KA = 0.523, KB = 600, $f_{chop} = f_{CR}/16$ [Hz]

[Example] When C_{OSC} = 270 pF and R_{OSC} = 3.9 k Ω : f_{CR} = 1.57 MHz and f_{chop} = 1.57/16 = 98.4 kHz

Electrical Characteristics 1

DC Characteristics (unless otherwise specified, $V_M = 24 \text{ V}$, $V_{DD} = 5.0 \text{ V}$, $T_{opr} = 25$)

Characteristics		Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit	
Input voltage	High	V _{IH}	D0	CLK, STROBE, DATA, MODE,	2.0	_	_	V	
input voitage	Low	V _{IL}	DC	PHASE, ENABLE and PHASE pins	_	_	0.8		
		I _{IH1}		CLK, STROBE, DATA, MODE,	_	_	1.0		
land comment		I _{IL1}	DC	PHASE, ENABLE and PHASE pins	_	_	1.0	μА	
Input current		I _{IH2}		OLEED win	_	_	200.0	μА	
		I _{IL2}		SLEEP pin	_	_	1.0		
Current consumed by logic	c power	I _{DD1}	- DC	V _{DD} = 5.0 V, fcr stopped	_	3.0	4.5	mA	
supply		I _{DD2}		In SLEEP mode		0.3	1.0		
				Output open, $f_{CLK} = 1 \text{ kHz}$, logic operating, $V_{DD} = 5 \text{ V}$, $V_{M} = 24 \text{ V}$, all output stages stopped, charge pump charged		4.3	7.0		
V _M current consumption		I _{M2}	DC 2	Output open, f _{CLK} = 4 kHz, internal logic operating (100-kHz chopping), output stages operating without load, charge pump charged		20.0	28.0	mA 28.0	
		I _{M3}		In SLEEP mode	— 0.5 1.0		1.0		
Output standby current	Upper	IOH E		$V_{RS} = V_{M} = 24 \text{ V}, V_{out} = 0 \text{ V},$ ENABLE = Low, DATA = All low	-400	_	_		
Output bias current	Upper			$V_{RS} = V_{M} = 24 \text{ V}, V_{out} = 24 \text{ V},$ ENABLE = Low, DATA = All low	-200	_	_	μΑ	
Output leakage current	Lower	loL	$V_{RS} = V_{M} = Ccp A = V_{out}$ = 24 V, SLEEP= Low				1.0		
Comparator reference voltage ratio	High	V _{RS (H)}		V _{ref} = 3.0 V, V _{ref} (gain) = 1/3.0 TORQUE = 11 = 100% set	_	100	_		
	Mid High	V _{RS (MH)}		V _{ref} = 3.0 V, V _{ref} (gain) = 1/3.0 TORQUE = 10 = 75% set	73	75	77	%	
	Mid Low	V _{RS (ML)}	DC	V _{ref} = 3.0 V, V _{ref} (gain) = 1/3.0 TORQUE = 01 = 50% set	48	50	52	70	
	Low	V _{RS (L)}		V _{ref} = 3.0 V, V _{ref} (gain) = 1/3.0 TORQUE = 00 = 25% set	23	25	27		

Electrical Characteristics 2

DC Characteristics (unless otherwise specified, $V_M = 24 \text{ V}$, $V_{DD} = 5.0 \text{ V}$, $T_{opr} = 25$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit	
Output current interchannel error	Δl _{OUT1}	DC	Error in output current between channels (I _{OUT} = 1.5 A)	-5.0	_	5.0	%	
Output current setting error	Δl _{OUT2}	DC	I _{OUT} = 1.5 A	-5.0	_	5.0	%	
RS pin current	I _{RS}	DC					μΑ	
Output transistor drain-source ON-resistance	RON1		$I_{OUT} = 1.5 \text{ A}, V_{DD} = 5.0 \text{ V},$ $T_j = 25 ^{\circ}\text{C}, \text{ forward direction}$	—	0.3	0.4		
	RON1	DC	$I_{OUT} = 1.5 \text{ A}, V_{DD} = 5.0 \text{ V},$ $T_j = 25 ^{\circ}\text{C}, \text{ reverse direction}$	_	0.3	0.4		
	RON2	DC	$I_{OUT} = 1.5 \text{ A}, V_{DD} = 5.0 \text{ V},$ $T_j = 105 ^{\circ}\text{C}, \text{ forward direction}$	_	— 0.4		Ω	
	I RONZ I I		I_{OUT} = 1.5 A, V_{DD} = 5.0 V, T_j = 105 °C, reverse direction	— 0.4 0.55				
V _{REF} input voltage	V _{ref}	DC	V _M = 24 V, V _{DD} = 5.0 V, ENABLE, output operation	2.0		V _{DD}	V	
V _{REF} input current	I _{ref}	DC	$V_{ref} = 3.0 \text{ V},$ $V_{M} = 24 \text{ V}, V_{DD} = 5.0 \text{ V},$ SLEEP	_	_	100	μΑ	
V _{REF} attenuation ratio	attenuation ratio $ \begin{array}{c c} V_{ref} \\ (GAIN) \end{array} DC \begin{array}{c} V_{ref} = 3.0 \text{ V}, \\ V_{M} = 24 \text{ V}, V_{DD} = 5.0 \text{ V}, \\ SLEEP \end{array} $		1/2.82	1/3	1/3.18	_		
TSD operating temperature (Note 1)	T _j TSD	DC	V _{DD} = 5 V, V _M = 24 V	130	_	170	°C	
Overcurrent protection circuit operating current	ISD	DC	V _{DD} = 5 V, V _M = 24 V	_	6.0	_	Α	
Outro t OFF made avanto valteer	Vpor (V _{DD})	DC	V _M = 24 V	_	3.0	_	V	
Output OFF mode supply voltage	Vpor (V _M)	DC	V _{DD} = 5 V	_	15.0	_	V	

Note 1: Thermal shutdown (TSD) circuit

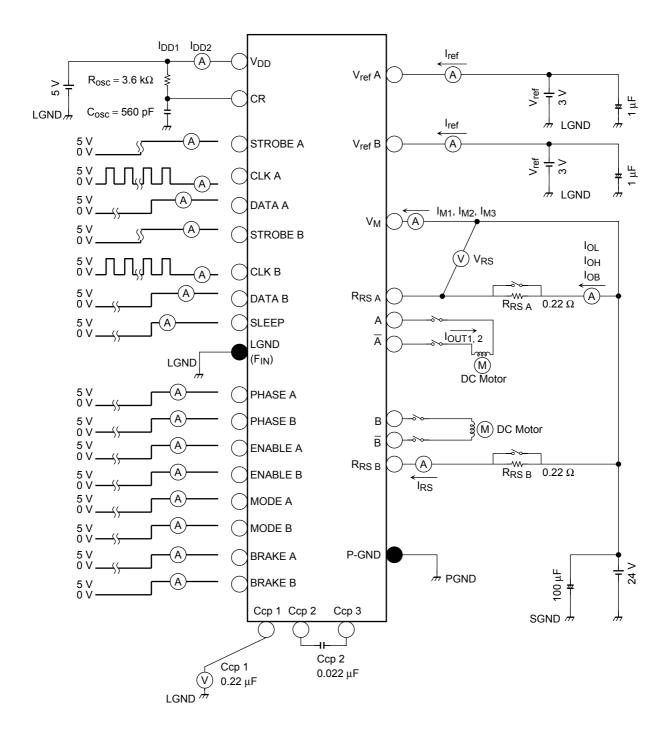
When the IC junction temperature reaches the specified value and the TSD circuit is activated, the internal reset circuit turns output off. The TSD activation temperature can be set within the range from 130°C (min) to 170°C (max). Once the TSD circuit is activated, output is stopped until a pulse (L to H to L) is subsequently applied to the SLEEP pin. The charge pump is halted while the TSD circuit is active. The TSD circuit does not include hysteresis. Applying a pulse (L to H to L) to the SLEEP pin deactivates the circuit.

Note 2: Overcurrent protection circuit (ISD)

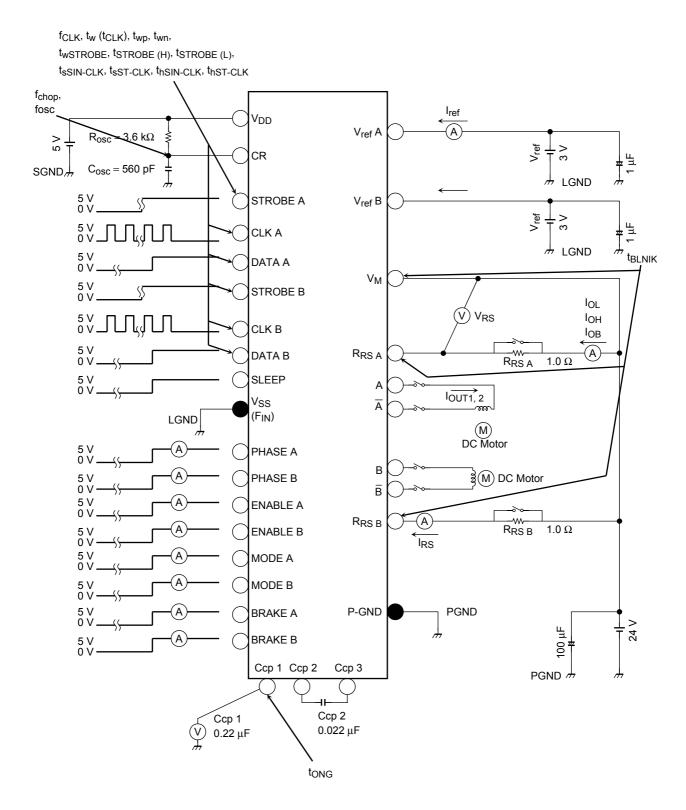
This circuit is activated when a current pulse exceeding the specified output value is applied for a period of $1/2f_{CHOP}$ (min) to f_{CHOP} (max).

The circuit activates the internal reset circuit to turn output off.

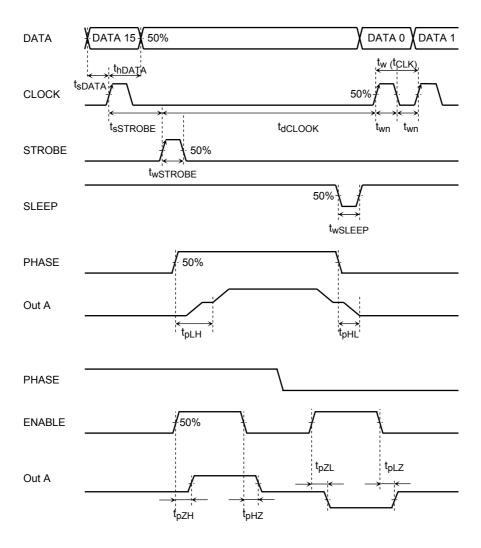
Once it is activated, output is stopped until a pulse (L to H to L) is subsequently applied to the SLEEP pin. While the ISD circuit is active, the IC is placed in SLEEP mode with the charge pump halted.

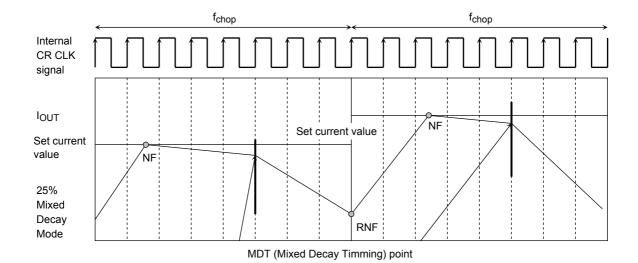

TOSHIBA

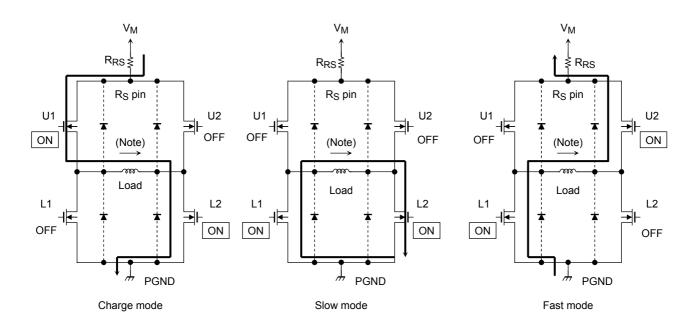
AC Characteristics (Topr = 25°C, V_{M} = 24 V, V_{DD} = 5 V with load of 6.8 mH/5.7 Ω)


Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Clock frequency	fCLK	_		1.0	_	25.0	MHz
	t _w (t _{CLK})			40.0	_	_	
Minimum clock pulse width	t _{wp}	AC		20.0	_	_	ns
	t _{wn}			20.0	_		
	twstrobe			40.0	_	_	
Minimum STROBE pulse width	tSTROBE (H)	AC		20.0	_	_	ns
	tSTROBE (L)			20.0	_	_	
Minimum SLEEP pulse width	twstrobe	AC		tong	_	_	ns
Phase difference between PHASE signal and fcr	tp	AC		_	_	1/f _{CR}	ns
Blanking time for preventing false detection	t _{BLNIK}		(Note 1)	_	300		ns
Data setup time	t _s SIN-CLK	AC		20.0	_	_	
	t _{sST-CLK}	AC		20.0	_	_	ns
Data hold time	thSIN-CLK	AC		20.0	_	_	ns
	thST-CLK	710		20.0	_	_	
STROBE setup time (relative to CLK)	t _{sSSB-CLK}	AC		20.0	_	_	ns
STROBE hold time (relative to CLK)	thSB-CLK	AC		20.0	_	_	
	t _f			_	40.0	100	ns
	t _f			_	40.0	100	
	t _{pLH}			_	100	200	
Output transistor switching time	t _{pHL}	AC		_	580	1000	
	t _{pLZ}			_	100	200	
	t _{pHZ}			_	350	700	
	t _{pZL}			_	1000	2000	
	t _{pZH}			_	350	700	
CR reference signal oscillation frequency	f _{CR}		$C_{OSC} = 270 \text{ pF}, R_{OSC} = 3.9 \text{ k}\Omega$	1.1	1.3	1.5	MHz
Chopping frequency	f _{chop} (min) f _{chop} (typ.) f _{chop} (max)			20.0	_	150.0	kHz
Oscillation frequency	f _{chop}		When f _{CR} = 480 kHz	_	30.0	_	kHz
Charge pump rise time	tong	AC		_	2.0	4.0	ms

Note 1: The blanking time is internally fixed but it can be elongated by applying a serial blanking time signal.


Test Circuit (DC)


Test Circuit (AC)


AC Test Waveforms

Waveform in Mixed Decay Mode (Current Waveform)

Output Transistor Operating Mode

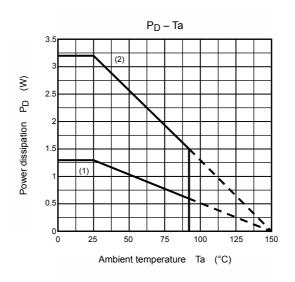

Output Transistor Operation Functions

CLK	U1	U2	L1	L2
Charge	ON	OFF	OFF	ON
Slow	OFF	OFF	ON	ON
Fast	OFF	ON	ON	OFF

Note: The above table is an example where current flows in the direction of the arrows in the above figures. When the current flows in the opposite direction of the arrows, see the table below.

CLK	U1	U2	L1	L2
Charge	OFF	ON	ON	OFF
Slow	OFF	OFF	ON	ON
Fast	ON	OFF	OFF	ON

Power Supply Sequence (Recommended)


Note 1: If V_{DD} drops to the level of the V_{DDR} or below while the specified voltage is applied to the V_M pin, the IC is internally reset.

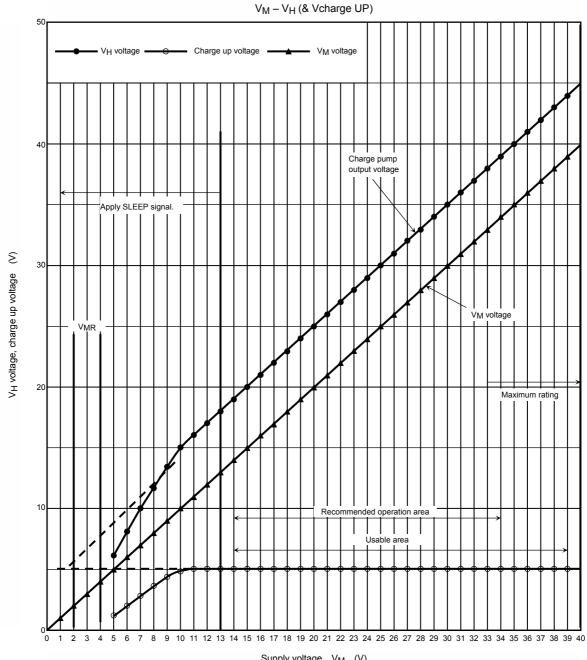
This is a protective measure against malfunction. Likewise, if V_M drops to the level of V_{MR} or below while regulation voltage is applied to V_{DD} , the IC is internally reset as a protective measure against malfunction. To avoid malfunction, when turning on V_M or V_{DD} , applying a signal to the SLEEP pin at the above timing is recommended.

It takes time for the output control charge pump circuit to stabilize. Wait up to t_{ONG} time after power on before driving a motor.

- Note 2: When the V_M value is between 3.3 to 5.5 V, the internal reset is released, thus output may be active. In such a case, the charge pump circuit cannot operate properly because of insufficient voltage. The IC should be held in SLEEP mode until V_M reaches 13 V or more.
- Note 3: Since $V_{DD} = 0 \text{ V}$ and $V_M = \text{voltage}$ within the rating are applied, output is turned off by internal reset. At that time, a current of several mA flows due to a current path between V_M and V_{DD} . When the output voltage is high, make sure that the specified voltage is applied to V_{DD} .

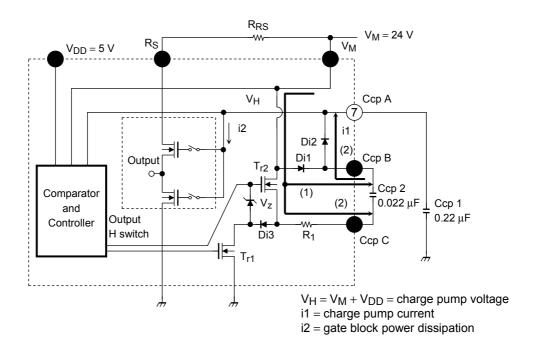
P_D – Ta (Package power dissipation)

Transient thermal resistance


- (1) $HSOP36 R_{th}$ (j-a) without a board (96°C/W)
- (2) When mounted on a board (140 mm \times 70 mm \times 1.6 mm: 38°C/W: typ.)

Note: R_{th (j-a)}: 8.5°C/W

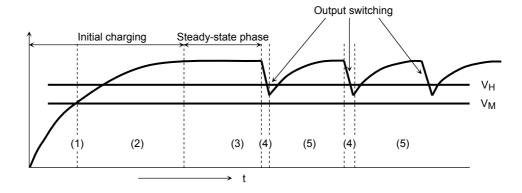
Relationship between V_M and V_H (charge pump voltage)


Note: $V_{DD} = 5 V$

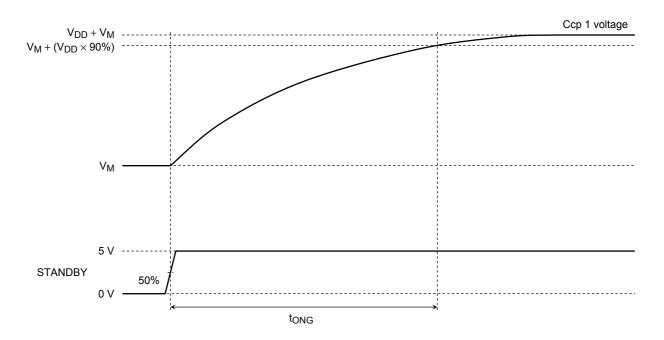
Ccp 1 = 0.22 μ F, Ccp 2 = 0.022 μ F, f_{chop} = 150 kHz (Care must be taken about the temperature charges of charge pump capacitor.)

 $\begin{array}{c} \text{Supply voltage} \quad \text{V}_{M} \quad \text{(V)} \\ \text{Charge pump voltage V}_{H} = \text{V}_{DD} + \text{V}_{M} \text{ (= Ccp A)} \quad \text{(V)} \\ \text{(Maximum rating is V}_{DD} \text{ (7 V)} + \text{V}_{M} \text{ (40 V))} \end{array}$

Operation of Charge Pump Circuit



• Initial charging


- (1) When RESET is released, T_{r1} is turned on and T_{r2} turned off. Ccp 2 is charged from V_M via Di1.
- (2) After T_{r1} is turned off and T_{r2} is turned on, and C_{cp} 1 is charged from C_{cp} 2 via D_{cp} 2.
- (3) When the voltage difference between V_M and V_H (Ccp A pin voltage = charge pump voltage) reaches V_{DD} or higher, operation halts (in the steady-state phase).

• Actual operation

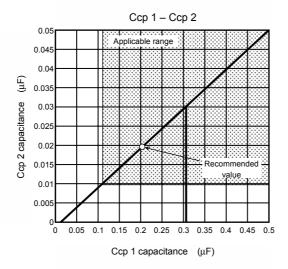
- (4) The charge of Ccp 1 charge is used at fchop switching and the potential of VH drops.
- (5) The circuit is charged up by the operations of (1) and (2) above.

Charge Pump Rise Time

tong: Time taken for capacitor Ccp 2 (charging capacitor) to fill up Ccp 1 (storing capacitor) to $V_M + V_{DD}$ after a reset is released.

The internal circuits cannot drive the gates correctly until the voltage of Ccp 1 reaches $V_M + V_{DD}$. Be sure to wait for t_{ONG} or longer before driving the motors.

Basically, the larger the Ccp 1 capacitance is, the smaller the voltage fluctuation is, though the initial charge up time is longer.

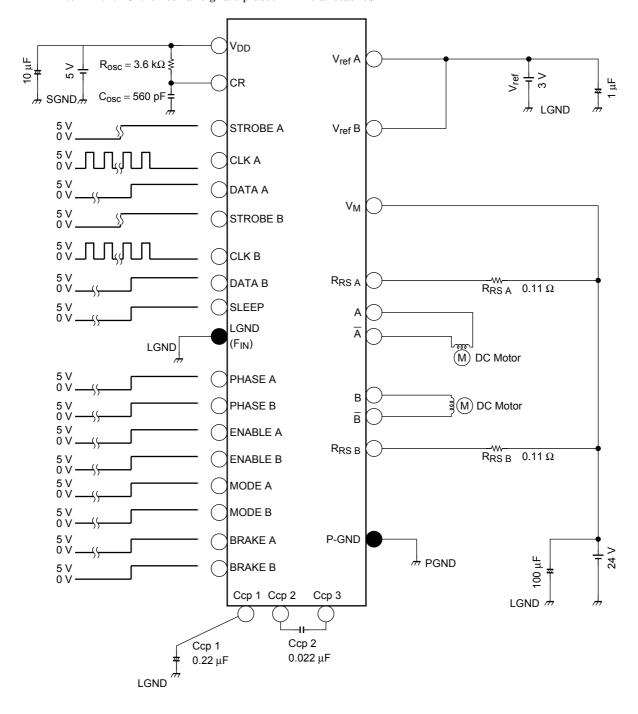

The smaller the $Ccp\ 1$ capacitance is, the shorter the initial charge-up time is, but the voltage fluctuation is larger.

Depending on the combination of capacitors (especially with small capacitance), voltage may not be sufficiently boosted. When the voltage does not increase sufficiently, RoN of output DMOS becomes lower than the reference value, which raises the temperature.

Thus, use the capacitors under the capacitor combination conditions (Ccp 1 = 0.22 μ F, Ccp 2 = 0.022 μ F) recommended by Toshiba.

External Capacitor for Charge Pump

When driving a motor while $V_{DD} = 5$ V, $f_{chop} = 150$ kHz, L = 10 mH under the conditions of $V_{M} = 27$ V and 2.0 A, the logical values for Ccp 1 and Ccp 2 are as shown in the graph below:

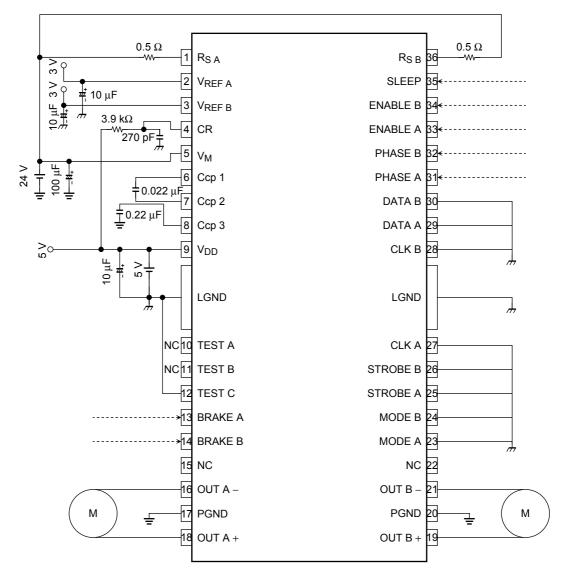


Choose Ccp 1 and Ccp 2 to be combined from the above applicable range. We recommend Ccp 1:Ccp 2 at 10:1 or more. (If our recommended values (Ccp = 0.22 μ F, Ccp 2 = 0.022 μ F) are used, the drive conditions in the specification sheet are satisfied. (There is no capacitor temperature characteristic as a condition.) When setting the constants, make sure that the charge pump voltage is not below the specified value and set the constants with a margin (the larger Ccp 1 and Ccp 2, the more the margin). Some capacitors exhibit a large change in capacitance according to the temperature. Make sure the above capacitance is obtained under the IC ambient temperature.

Recommended Application Circuit

The values of external constants are example recommended values. For values under different input conditions, see the above-mentioned recommended operating conditions.

(The following shows an example when fcho = 501 Hz (CR frequency = 800 kHz and constant-current limiter = 2.27 A) with serial signals placed in initial status.)

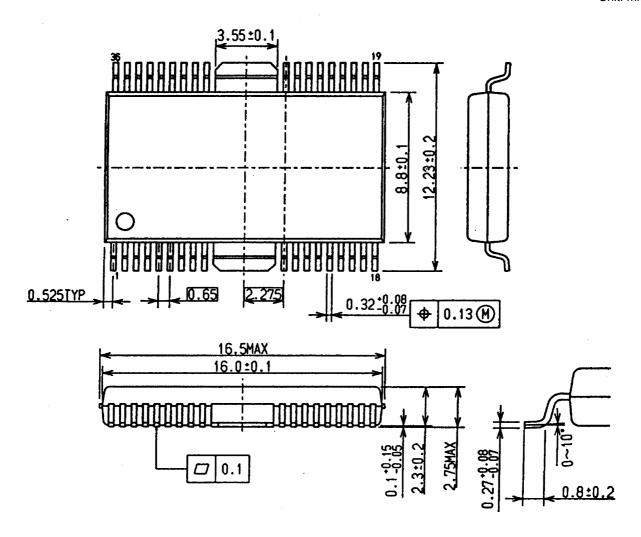


Note: It is recommended to add bypass capacitors as required.

Make sure that all gound pins are connected to the same ground rail.

STROBE, CLK, and DATA must be tied to LGND if serial input is not used for settings or motor control. Because there may be short circuits between outputs, to supply, or to ground, be careful when designing output lines, V_{DD} (V_{M}) lines, and ground lines.

Connection Diagram (when external forced PWM mode is used)



----> : Signal from central unit

Package Dimensions

HSOP36-P-450-0.65

Unit: mm

Weight: 0.79 g (typ.)

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.