

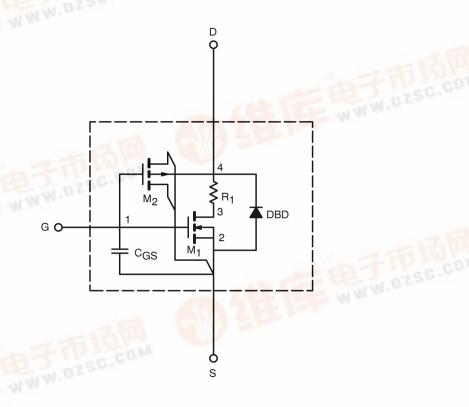
SPICE Device Model SUP/SUB70N03-09BP

Vishay Siliconix

N-Channel 30-V (D-S), 175°C MOSFET PWM Optimized

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71701 www.vishay.com

SPICE Device Model SUP/SUB70N03-09BP

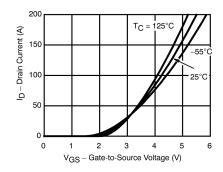
Vishay Siliconix

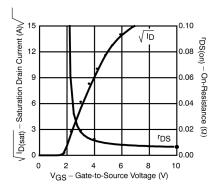
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbo I	Test Condition	Simulate d Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.5		V
On-State Drain Current ^a	$I_{D(on)}$	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{V}$	604		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10V, I_D = 30A$	0.007	0.007	Ω
		$V_{GS} = 4.5V, I_D = 20A$	0.010	0.010	
		$V_{GS} = 10V, I_D = 30A,$ $T_J = 125^{\circ}C$	0.0085		
		$V_{GS} = 10V, I_D = 30A,$ $T_J = 175^{\circ}C$	0.0095		
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15V, I_D = 30A$	45	45	S
Forward Voltage ^a	V_{SD}	$I_S = 70A, V_{GS} = 0 V$	0.92	1.1	V
Dynamic ^b					
Input Capacitance	C_{iss}	$V_{GS} = 0V, V_{DS} = 25V,$ f = 1 MHz	1484	1500	pf
Output Capacitance	C_{oss}		465	530	
Reverse Transfer Capacitance	C_{rss}		153	240	
Total Gate Charge ^c	Q_g	$V_{DS} = 15V, V_{GS} = 5V,$ $I_{D} = 70A$	15	15.5	nC
Gate-Source Charge ^c	Q_{gs}		5	5	
Gate-Drain Charge ^c	Q_{gd}		6	6	
Turn-On Delay Time ^c	t _{d(on)}	$V_{DD} = 15V, R_L = 0.21\Omega$ $I_D \cong 70A, V_{GEN} = 10V,$ $R_G = 2.5\Omega$ $I_F = 70A, di/dt = 100 A/\mu s$	10	10	ns
Rise Time ^c	t _r		13	8	
Turn-Off Delay Time c	$t_{\text{d(off)}}$		26	25	
Fall Time ^c	t _f		34	9	
Reverse Recovery Time	t _{rr}		20	30	

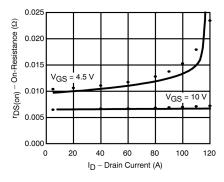
Notes

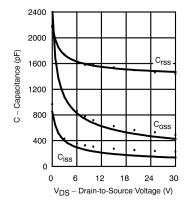
a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing. c. Independent of operating temperature.

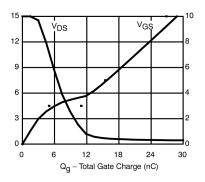

Document Number: 71701 www.vishay.com




SPICE Device Model SUP/SUB70N03-09BP


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71701 www.vishay.com