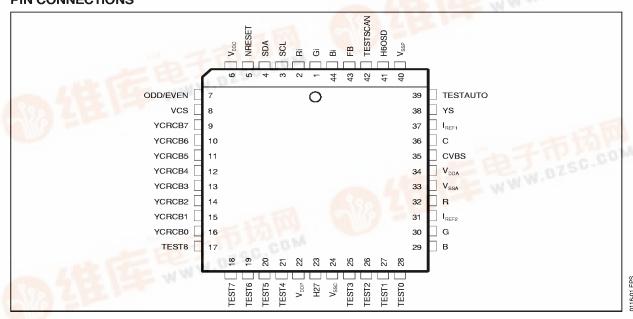


STV0116

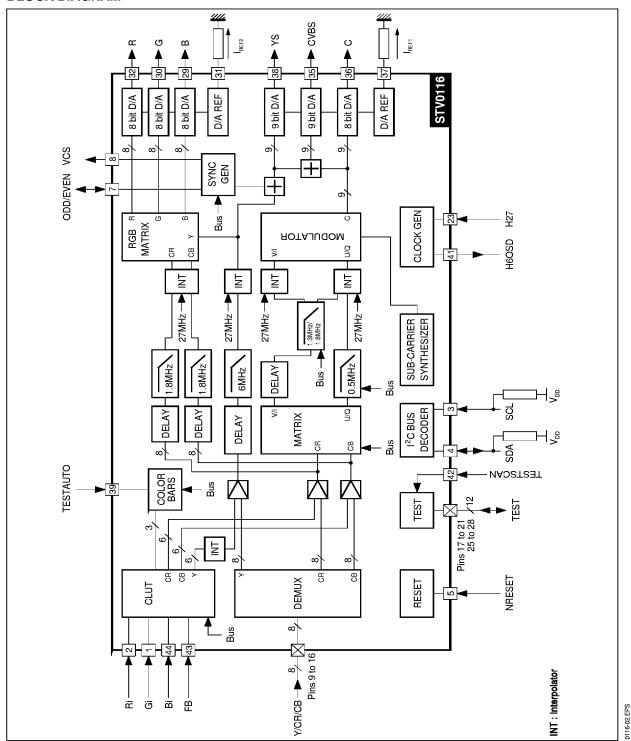
PAL/NTSC DIGITAL ENCODER


- BOTH 625 & 525 LINES MULTIPLEXED 8 BIT DIGITAL INPUT ACCORDING TO CCIR 601-2 AND REC 656
- NTSC M, PAL B, D, G, H, I, PAL N (ARGEN-TINA) PROGRAMMABLE OUTPUT
- COMPOSITE OR LINE SYNCHRONISM OUTPUT
- CVBS, Y ANALOG OUTPUTS THROUGH 9 BIT DACs
- RGB AND C ANALOG OUTPUTS THROUGH 8 BIT DACs
- OSD INSERTION WITH CLUT AND 6.75MHz OUTPUT CLOCK REFERENCE
- TRUE 27MHz MODULATOR
- TRUE NTSC ENCODING WITH I, QAXIS
- OVERSAMPLING TO 27MHz FOR EASY OUTPUT FILTERING
- ODD/EVEN SYNCHRONISM INPUT/OUTPUT
- ON CHIP TEST PATTERN GENERATOR
- I²C BUS CONTROLLED
- EASY CONFIGURATION TO ANY STAND-ARD WITH ONE REGISTER LOADING

DESCRIPTION

The STV0116 converts the digital output of a Video MPEG decoder into a standard analog base band NTSC/PAL signal, with a modulated subcarrier. Both composite and SVHS format video signals are simultaneously delivered to 3 analog outputs. The STV0116 includes additionnally three analog RGB outputs to be used for the SCART plug.

PIN CONNECTIONS


October 1996 1/21

PIN DESCRIPTION

Pin N°	Symbol	Туре	Function
2 - 1 - 44	Ri, Gi, Bi	I	OSD serial inputs. OSD_Pixel minimum width is 148ns (i.e. 6.75MHz). Ri, Gi, Bi transcoded to Y, CR, CB according to CLUT (8 colors among 262144). CLUT tint programmable
3	SCL	l	Serial interface with microcontroller. Spread of frequency: 0 to 400kbit/s. Level 0 > 200ns.
4	SDA	1/0	Trigger pads to ensure a low frequency input. Maximum capacitance for each bus line (400pF). Chip address (hex): b0 (write mode), b1 (read mode).
5	NRESET	I	The hard reset is active low. It has priority on software reset. FALL and RISE time of hard NRESET < 20ns. Hold time of hard NRESET > 80ns. No synchronism of hard NRESET is necessary. NRESET Imposes default states.
24 - 6	V _{SSC} - V _{DDC}		0V-5V supply for core.
7	ODD/EVEN	I/O	ODD/EVEN frame input (slave mode by ODD/EVEN), output (master mode or slave mode by EAV). The synchronism reference is the rising edge of H27. Default polarity: odd field = LOW level, even field = HIGH level.
8	vcs	0	Composite synchronization or horizontal line synchronization output. Polarity (default : positive). The synchronism reference is the rising edge of H27.
9 to 16	YCRCB [7:0]	I	Time multiplexed 4:2:2 luminance and color difference input as defined in CCIR Rec 601_2 and Rec 656 (TTL levels inputs). 525 lines/60Hz or 625 lines/50Hz. Timing (Rec 656 part II). A line length is 1716 or 1728 periods of 27MHz for 525 or 625 line systems respectively.
17 to 21 25 to 28	TEST [7:0]	I/O	For test purpose only. Input (default mode).
40 - 22	V _{SSP} - V _{DDP}		0V-5V supply for pads.
23	H27	I	27MHz input clock reference. LOW/HIGH ratio: 50%. FALL and RISE time: 5ns Max. The rising edge is the reference for HOLD and SETUP time of all inputs. The duration of High/Low level is in accordance with REC656 (18.5ns ±3ns with less than 3ns of jitter).
32 - 30 - 29	R, G, B	0	Current analog outputs synchrone with CVBS.
31	I _{REF2}	I	Reference current source of the triple 8 bit DAC for R, G, B. For a reference load of $1.8k\Omega$: $1.7 < I_{REF2}$ (mA) < 2.1 .
33 - 34	V _{SSA} - V _{DDA}		0V-5V supply for DACs.
35	CVBS	0	Current analog video composite output.
36	С	0	Current analog chrominance output, SVHS compatible.
37	I _{REF1}	I	Reference current source of the triple DAC for CVBS, YS and C. For a reference load of $1.8 k\Omega$: $1.7 < I_{REF1}$ (mA) < 2.1 .
38	YS	0	Current analog luminance output with composite synchronization, SVHS compatible.
39	TESTAUTO	l	Hardware autotest mode control, active HIGH. TESTAUTO input forces the master mode with color bar pattern outputs.
41	H6OSD	0	6.75MHz clock output for the reference of an OSD input signal.
42	TESTSCAN	l	Full scan test mode control, active HIGH. TESTSCAN must be grounded for normal operation.
43	FB	l	Fast blanking is minimum 1 OSD_pixel large. FB synchronous to H27. OSD active when FB is HIGH.

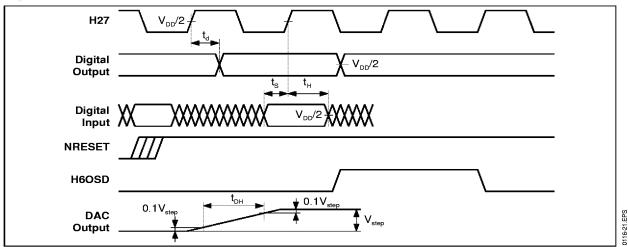
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	7	V
V _{IN}	Digital Inputs	V _{DD} + 0.3	٧
V _{OUT}	Digital and Analog Outputs	0, V _{DD}	V
T _{oper}	Operating Temperature	0, +70	°C
T _{stg}	Storage Temperature	-20, +150	°C

0116-02.TBL

ELECTRICAL CHARACTERISTICS


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OC (V _{DDA} =	$= V_{DDP} = V_{DDC} = 5V$, $T_{amb} = 25$ to 7	70°C, unless otherwise specified)				
Supply						
V_{DDA}	Analog Supply Voltage		4.75	5	5.25	>
I _{DDA}	Analog Supply Current	$I_{REF1}=I_{REF2}=3mA,\ R_L=400\Omega$		30		mA
V_{DDP}	Output Buffer Supply Voltage		4.75	5	5.25	٧
I_{DDP}	Output Buffer Supply Current	Autotest mode		30		mA
V_{DDC}	Core Supply Voltage		4.75	5	5.25	>
I_{DDC}	Core Supply Current	Autotest mode		20		mA
Digital Inp	outs					
V _L V _H	Low Input Voltage (SDA, SCL) High Input Voltage (SDA, SCL)		-0.50 3		1.50 7	>>
V _{IL} V _{IH}	(any others are TTL compatible) Low Input Voltage High Input Voltage		-0.50 2		0.80 V _{DD} + 0.5	>>
ال	Input Leakage Current	V _{ILmin} or V _{IHmax}			10	μΑ
CL	Input Capacitance (all inputs)				10	рF
Digital Ou	tputs					
$oldsymbol{V}_OL \ oldsymbol{V}_OH$	Low Output Voltage High Output Voltage	$I_{OL} = 1mA$ $I_{OH} = -1mA$	V _{SS} 2.40		0.60 V _{DD}	>>
DACs						
ILE	Integral Linearity Error	$I_{REF} = 3mA, V_{DDA} = 5V,$			±2	LSB
DLE	Differential Linearity Error	$R_L = 400\Omega$			±1	LSB
lg	Current Gain			2		
G_{E}	Gain Error			3		%

AC ($V_{DDA} = V_{DDP} = V_{DDC} = 5V$, $T_{amb} = 25$ to 70 °C, $C_L = 20$ pF, unless otherwise specified)

Digital In	puts					
ts	Input Data Set-up Time		7			ns
t⊢	Input Data Hold Time		10			ns
Digital Ou	utputs					
t _d	Output Delay Time	C _L = 10pF			29	ns
ph0	Output Phase of H6OSD after Re	eset		H27		
Fmi	Frequency of SCL				1	MHz
Clock Inp	out					
tc	Clock Cycle Time			27		MHz
t _D	Clock Duty Factor			50		%
t_R	Clock Rise Time				5	ns
t _F	Clock Fall Time				5	ns
DAC Out	put					
t _{DH}	Output Delay Time	$I_{REF} = 3mA$, $R_L = 400\Omega$, $C_L = 10pF$ 32 LSB max step 9 bit dac 16 LSB max step 8 bit dac			29	ns

116-04.TBL

Figure 1

CIRCUIT DESCRIPTION

The STV0116 can operate either in master mode or in slave mode receiving a vertical parity synchronism signal from MPEG IC.

An I²C Bus allows to control the main functions:

- Selection of the standard,
- Synchronisation mode and polarity,
- Color killing,
- Reset of the synchronism and oscillator,
- Test mode.
- By-pass of the chroma filters,
- Sub-carrier phase and frequency adjustment,
- OSD CLUT.

Pixel Input Format

The digital input is a time multiplexed YCBCR 8 bit stream.

The samples represent a succession of CB/Y/CR/Y component values and are latched on the rising edge of H27 (27MHz clock). This input is fully compatible with SGS-THOMSON MPEG decoder IC's outputs.

Video Timing

The STV0116 outputs interlaced video to conform to the NTSC or PAL timing specifications. Non standard line counts in PAL or NTSC modes are not supported.

The 8 field (for PAL) and 4 field (for NTSC) burst sequences are internally generated, using the 27MHz clock as reference.

Rise and fall times of sync, blanking interval, and the burst envelope are internally controlled according to the composite video specification (see Figures 6 and 7). Only lines 1 to 9, 264 to 272 for 525 and 624 to 5, 311 to 318 for 625 lines system respectively are blanked. The others can be used for data encoding.

Master Mode

After a software reset, the sync generator starts counting 27MHz clock pulses and provides a complete composite sync pulse sequence of 4 fields to the NTSC encoder.

For PAL, the combination with the ODD/EVEN line sequence gives the 8 field sequence for the color burst insertion. At the end of a sequence the counter is automatically reset and a new sequence can start. In the same time an ODD/EVEN frame pulse is output to control the MPEG decoder.

Slave Mode

After a software reset, the sync counter waits for the falling edge of the ODD/EVEN pulse sent to the ODD/EVEN Pin selected as an input. Then a sequence identical to the one in master mode can start and is reset by the next falling edge of the field pulse (see Figure 2).

If no ODD/EVEN pulse is present after a full 3 frames sequence, the IC can either regenerate itself the next sequences in "free running" using the 27MHz clock, or switch on the internal test bar pattern, or blank the outputs, after reading status register.

Alternatively the STV0116 can be set to extract the synchronization directly from the Y/CR/CB input data sequence (see Figure 3).

These different modes are selectable by the I²C Bus.

Figure 2: Slave 1 (Slave by ODD/EVEN)

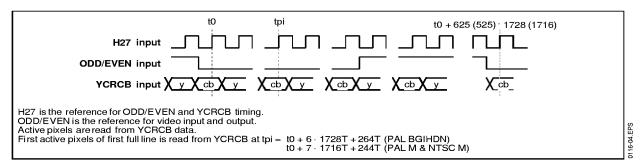
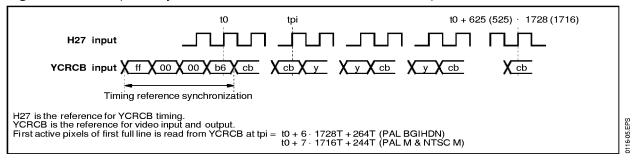



Figure 3: Slave 2 (Slave by EAV, End of Active Video, taken on YCRCB)

Chrominance Encoding

The demultiplexed CR, CB samples feed a chroma I/Q matrix for NTSC and a U/V matrix for PAL. The U/V or I/Q chroma signals are then band limited according to the CCIR 624 recommendations and interpolated at a 27MHz pixel rate. This process makes easier the filtering for the D/A convertion and allows a more accurate encoding.

A Discrete Time Oscillator, using a 22 bit phase accumulator, generates the color sub-carrier. This signal feeds a quadrature modulator which modulates the baseband chroma signals.

The phase and the frequency of the sub-carrier can be adjusted if needed or reset by software.

Luminance Processing

The demuxed Y samples are band limited and interpolated at 27MHz samples rate.

Then a gain and offset compensation is applied to the luma signal before inserting the synchronism pulses.

The interpolation filter compensates for the sinX/X attenuation provided by the D/A convertion, and greatly simplifies the output filtering.

A delay is inserted in the luma path to transmit correctly picture transition.

CVBS and SVHS Outputs

Each digital signal drives a 9-bit D/A converter for Y, CVBS, 8-bit for C, operating at 27MHz.

The outputs are current sources and are proportional to the current reference value. For 3mA reference current and 400Ω load, the levels are such that a PNP emitter follower is enough to drive the SCART plug (1V from sync tip to white level). The integrated over sampling filters make the external antiliasing low pass filter simpler.

Reset Procedure

A hard reset is performed by grounding the reset pin. This will set the IC in PAL BDGHI and slave mode.

The "software reset" configure the IC according to the configuration fixed by register 0 (that isn't reseted itself). The sync generator is then ready for a new sequence. This will be initialized either by the next clock pulse in master mode, or by the next field pulse in slave mode.

R, G, B Outputs

After demux, CR/CB data feed a 4 times interpolation filter at 27MHz sample rate. Then the chroma base-band signal is band limited at 1.8MHz and matrixed with Y. Three 8 bit D/A converters generate R, G, B outputs at 27MHz.

H6OSD Output

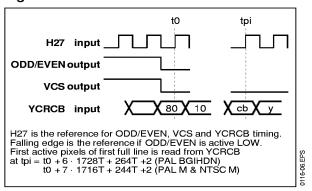
This 6.75Mhz clock signal is intended to trig the OSD input data. It is synchronous with the H27 clock reference.

R, G, B, FB OSD Inputs

These are logic inputs for OSD insertion. FB (fast blanking) is used to switch from the main video input to the RGB inputs. FB and RGB inputs must be locked to the H27 clock. They are latched on the rising edge of 6.75MHz clock signal.

The RGB inputs allow 8 color combinations. The internal CLUT (color look up table) affects for each of these 8 values a color chosen among 643 preset for Y, CR, CB components. As CLUT performs the matrixing into Y, CR and CB, the resulting signals take benefit of the oversampling filters in the main path. Additionally the Y signal is interpolated. Inserted OSD rate is 6.75Mbit/s.

Signal Quality Detector


It is active if the timing reference synchronization data of the input data stream is present.

By use of Hamming decoding in video Y/CR/CB (EAV, SAV), the IC generates a bit (HOK). This bit indicates multiple errors of the hamming decoding. It can be read by the microcontroller.

Master/Slave Functionality

T = 1 period of H27. Duration of active line is 1440T.

Figure 4: Master Mode

Freerun and SLAVE Mode

If freerun is allowed and the vertical synchronism is lost, all the video signals are generated with the picture sampled on YCRCB. VCS is still available. If freerun is not allowed VCS is stopped and YS, C, CVBS, R, G, B are at BLACK level.

Synchronization Signals

T = 37.037ns = 1 period of H27 (27MHz).

Figure 5: H27 Input Maximum Acceptance

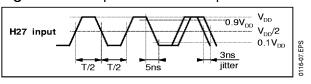


Figure 6: Logic and Analog Synchronisms

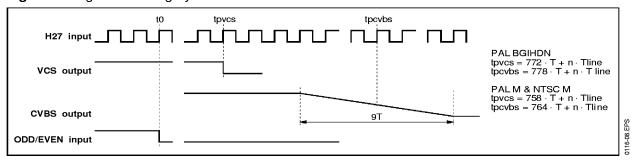


Figure 7: Logic and Analog Synchronisms (Slave by EAV synchro only)

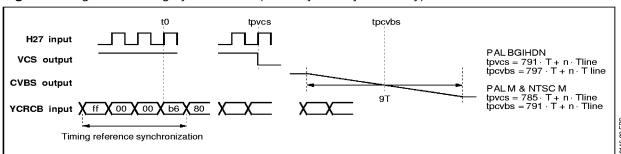


Figure 8: YCRCB and OSD Delay to Analog Output

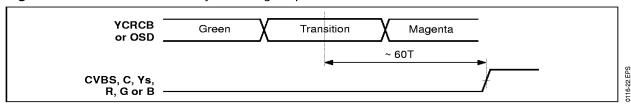


Figure 9: M Composite NTSC Output (100% Saturation, 100% Amplitude Colour Bars)

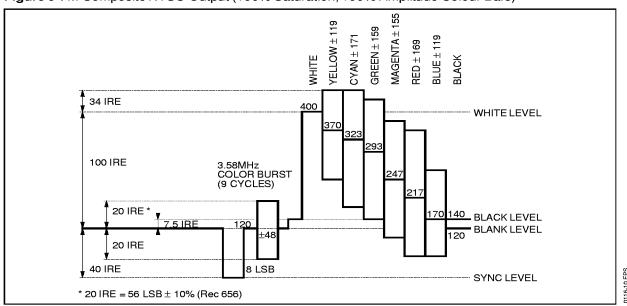


Figure 10: Composite PAL BGDHIN Output (100% Saturation, 100% Amplitude Bars)

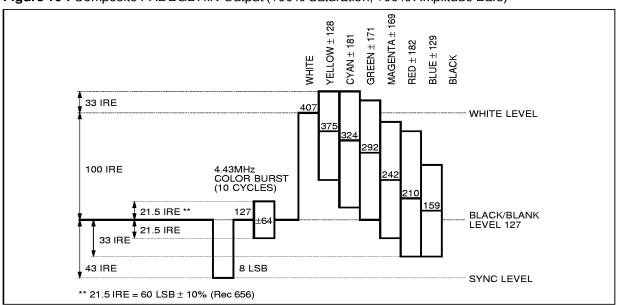


Figure 12: Luma Filter

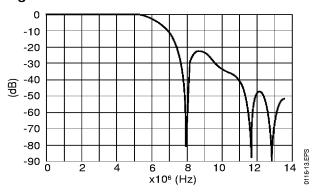


Figure 13 : Chroma Q Filter

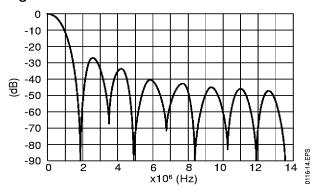
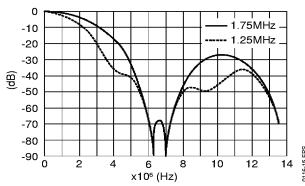



Figure 14: Chroma Filters

Note: Those filter curves include the sinx/x attenuation of DACs.

Figure 12a: Luma Filter

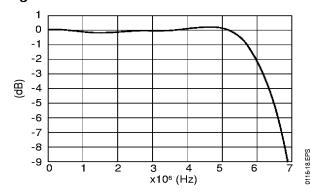


Figure 13a: Chroma Q Filter

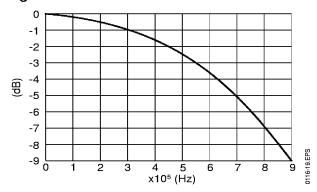
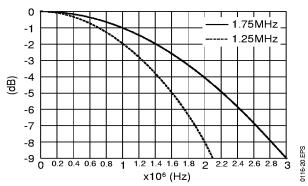



Figure 14a: Chroma Filters

I²C REGISTERS DESCRIPTION

The IC is controlled by an I^2 C Bus and internal registers can be read or written by an external microcontroller.

Encoder addresses are:

- Write 10110000 (b0 hex).
- Read 10110001 (b1 hex).

Registers are organized as follows:

Reg 0 : Sync mode selection, standard selection, sync polarity selection

Reg 1 : Color killer, chroma filter selection, sync output selection

Reg 2, 3 : Sync delay

Reg 4 to 9 : Sub-carrier frequencies

Reg 10 to 17: Y clut for RiGiBi input encoding Reg 18 to 25: CR clut for RiGiBi input encoding Reg 26 to 33: CB clut for RiGiBi input encoding

Reg 34 : Test (not to be used)

Reg 35 : Status Reg 36 to 38 : Line forcing

I²C FORMAT

Write Mode (all registers except STATUS)

-											
	s	Slave address	W	Α	Sub-address	Α	Data 0	Α	 Data N	Α	Р

S Start condition
Slave address 1011000
W = '0' Write flag

A Acknowledge, generated by slave (STV0116) when OK A = '0' else '1'

Sub-address Sub-address register (content is made of one byte)

Data 0 First data byte

Data N Continued data bytes (address is automatically incremented) and A's

P Stop condition

Read Mode (all registers)

S	Slave address	W	AC	Sub-address N	AC	Р
Then	i :	•				
S	Slave address	R	AC	Data N	АМ	

S Start condition

Slave address 7 bit address for STV0116: 1011000

W = '0' Write flag

AC Acknowledge, generated by slave (STV0116) when OK, AC = '0' else '1'

R = '1' Read flag

Sub-address 8 bit sub-address register

Data N Data byte of register N, sent by STV0116

Data N+1 Data byte of register N+1 (address automatically incremented)

AM Acknowledge, generated by the microcontroller AM = '0' when acknowledge is OK else '1'

P Stop condition (when last AM = '1')

I²C FORMAT (continued)

Remarks

Writing of a register:

Registers 0, 1, ..., 34 can be loaded sequentially with only one start/stop condition followed by the sub-address of the first register desired.

Example: Start followed by address b0 and sub-address 1 and then 3 bytes of data and stop: the cfg register will be loaded with the first byte and delay register will be loaded with the 2 others bytes.

Reading of a register:

Example 1: Reading of register 35 (STATUS): start followed by address b0 hex, AC = '0', then sub-address 35, AC = '0' and stop. Then start, address b1, AC = '0' and then data of register 35, AM = '1' and stop condition.

Example 2: Reading of registers 0 to 3: start followed by address b0 hex, AC = '0', and sub-address 0, AC = '0' and stop. Then start, address b1, AC = '0' and then first byte of register 0, AM = '0', second byte from register 1, AM = '0', third byte of register 2, AM = '0', fourth byte from register 3, AM = '1' and stop condition.

Figure 15: STV0116/PC Write Operation

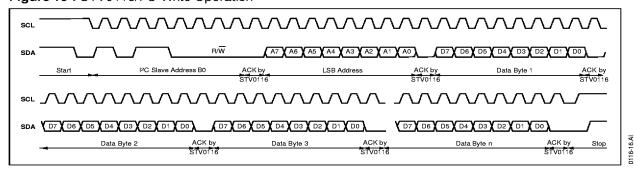
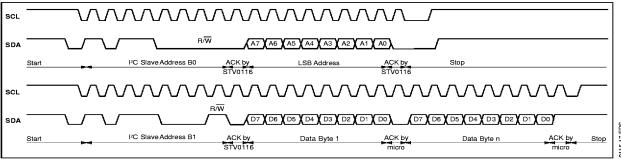



Figure 16: STV0116/PC Read Operation

REGISTERS MAPPING AND DESCRIPTION

- (*) default mode on hard NRESET. (**) default mode on TESTAUTO.

Register 0 Control (Read/Write)

		M	ISB							LSB
			d7	d6	d5	d4	d3	d2	d1	d0
Regis	ster 0	S	td1	std0	sym1	sym0	sys1	sys0	mod1	mod0
(*)	std1 0 0 1	std0 0 1 0	PALI	dard select BDGHI N Argentina C M						
(*)	sym1 0 1			ole ole : free-ru	n is active e				ositionned	(with a time
(*)	sym0 0 1		ODD	/EVEN inp	nization sou ut tion of F fro		mode			
(*)	sys1 0 1		Sync Posit Nega		oolarity					
	sys0					N polarity (as input (sl	lave) or as	output (slav	e : synchro
(*)	0 1		Sync		.ster)) D/EVEN fal D/EVEN ris					
(*)	mod1 0 1		No re Softv	eset vare reset						
(*) (**)	mod0 0 1		Slave Mast	e er (freerun	forced)					

Note: Software reset is automatically disabled at I²C stop condition. Reset is active during 4 H27 periods.

Register 1 Cfg (Read/Write)

		MSB							LSB		
		d7	d6	d5	d4	d3	d2	d1	d0		
Regi	ster 1	hsnvcs rstddfs flt1 syncok coki									
(*)	hsnvcs 0 1	Com	Output signal selection on VCS Composite synchro Horizontal synchro								
	rstddfs 0 to 1 0		Reset of DDFS (Direct Digital Frequency Synthetizer) Transition generates a pulse reset for oscillator								
(*)	flt1 1 0		ma pass ba Hz, 0.45MI Hz		ly						
(*)	syncok 0 1	Sync	hro availab hro OFF hro availab	-	e of no free- = 0)	run active					
(*)	coki 0 1	Colo Colo Colo	r ON	ed on C and	d CVBS (on	CVBS only	y in next rele	ease)			

Note: FOUR FILTERS FOR ENCODING NEEDS.
Luma passband filter (6.3MHz (BW = 5.75MHz with sinX/X D/A conversion))
Chroma passband filter (1.3MHz/1.8MHz: U/V and I, 1.8MHz/0.45MHz: Q, 1.8MHz: CR, CB for R, G, B encoding)
(chroma BW becomes 1.2MHz/1.7MHz, 0.45MHz, 1.7MHz with sinX/X DAC).

Register 2 Delay_msb (Read/Write)

MSB

	MSB							LSB
	d7	d6	d5	d4	d3	d2	d1	d0
Register 2	d10	d9	d8	d7	d6	d5	d4	d3

Register 3 Delay Isb

	d7	d6	d5	d4	d3	d2	d1	d0
Read Mode :								
Register 3 Write Mode:	d2	d1	d0	Reg2, d4	Reg2, d3	Reg2, d2	Reg2, d1	Reg2, d0
Register 3	d2	d1	d0	xx	xx	xx	xx	xx

d[10:0] sample polynomial counter at 27MHz

Sample polynomial counter $(1 + x^2 + x^{11})$ value on which falling edge of F (ODD/EVEN signal) is detected on YCRCB (F is extracted from EAV word)

LSB

1st byte: 21 (hex 15), 2nd byte: 128 (hex 80) for PAL BDGHIN (625 lines)

1st byte: 201 (hex c9), 2nd byte: 128 (hex 80) for M (525 lines)

Sample polynomial counter value on which falling edge of ODD/EVEN is detected

(*) 1st byte: 0, 2nd byte: 32 (hex 20) for PAL BDGHIN (625 lines)

1st byte: 0, 2nd byte: 32 (hex 20) for M (525 lines)

Note: Delay register should be loaded before Control register for synchro on YCRCB cross table of sample polynomial counter is given cech.txt

Register Increment for ddfs (Digital Frequency Synthesizer) (Read/Write)

 MSB
 LSB (see Note)

 d7
 d6
 d5
 d4
 d3
 d2
 d1
 d0

	d7	d6	d5	d4	d3	d2	d1	d0
Register 4	xx	xx	d21	d20	d19	d18	d17	d16
Register 5	d15	d14	d13	d12	d11	d10	d9	d8
Register 6	d7	d6	d5	d4	d3	d2	d1	d0

x x 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 PALBGHI

x x 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 PALM

f = 3.5795452MHz error = +0.2Hz

 $f_{th} = 3579545 \pm 10 Hz$

f = 4.4336206MHz error = +1.85Hz

 $f_{th} = 4433618.75 \pm 5Hz$

f = 3.5820558MHz error = -0.45Hz

 $f_{th} = 3582056.25 \pm 5Hz$

f = 3.5756120MHz error = +0.51Hz

 $f_{th} = 3575611.49 \pm 5Hz$

Note: 1 LSB = 6.43Hz

Register Phase Offset for ddfs (Digital Frequency Synthesizer) (Read/Write)

MSB LSB d7 d6 d5 d4 d3 d1 d0 Register 7 o20 017 XXXXo21 019 018 016 Register 8 015 o14 o13 012 011 010 о9 80 Register 9 о5 02 00 ο7 06 о4 о3 01

(*) Reset value depends on standard chosen in register 0

Register Palety (Read/Write)

	MSB							LSB
	d7	d6	d5	d4	d3	d2	d1	d0
Read Mode :								
Register 10	Reg10,c	l5 Reg10,d5	y75	y74	y73	y72	y71	y70
Register 11		l5 Reg11,d5		y64	y63	y62	y61	y60
Register 12		l5 Reg12,d5		y54	y53	y52	y51	y50
Register 13		l5 Reg13,d5		y44	y43	y42	y41	y40
Register 14		l5 Reg14,d5		y34	y33	y32	y31	y30
Register 15		l5 Reg15,d5		y24	y23	y22	y21	y20
Register 16		l5 Reg16,d5		y14	y13	y12	y11	y10
Register 17	Reg17,c	l5 Reg17,d5	y05	y04	y03	y02	y01	y00
Write Mode :								
Register 10	xx	xx	y75	y74	y73	y72	y71	y70
Register 11	XX	XX	y65	y64	y63	y62	y61	y60
Register 12	XX	xx	y55	y54	y53	y52	y51	y50
Register 13	XX	XX	y45	y44	y43	y42	y41	y40
Register 14	XX	XX	y35	y34	y33	y32	y31	y30
Register 15	XX	XX	y25	y24	y23	y22	y21	y20
Register 16	XX	XX	y15	y14	y13	y12	y11	y10
Register 17 NTSC	XX	XX	y05	y04	y03	y02	y01	y00
Register 17 PAL (to be loaded)	XX	xx	0	0	0	1	0	0

8 x 6 bit words for Y component.

Default Value :		Y(hexa)	Color	(100% white to black)
	111	3B	white	y7x
	110	28	yellow	y6x
	101	14	magenta	y5x
	100	10	red	y4x
	011	21	cyan	y3x
	010	1D	green	y2x
	001	09	blue	y1x
	000	04	black	y0x

Register Paletcr (Read/Write)

	MSB							LSB
	d7	d6	d5	d4	d3	d2	d1	d0
Read Mode :								
Register 18	Reg18,d5	Reg18,d5	cr75	cr74	cr73	cr72	cr71	cr70
Register 19	Reg19,d5	Reg19,d5	cr65	cr64	cr63	cr62	cr61	cr60
Register 20	Reg20,d5	Reg20,d5	cr55	cr54	cr53	cr52	cr51	cr50
Register 21	Reg21,d5	Reg21,d5	cr45	cr44	cr43	cr42	cr41	cr40
Register 22	Reg22,d5	Reg22,d5	cr35	cr34	cr33	cr32	cr31	cr30
Register 23	Reg23,d5	Reg23,d5	cr25	cr24	cr23	cr22	cr21	cr20
Register 24	Reg24,d5	Reg24,d5	cr15	cr14	cr13	cr12	cr11	cr10
Register 25	Reg25,d5	Reg25,d5	cr05	cr04	cr03	cr02	cr01	cr00
Write Mode :								
Register 18	xx	xx	cr75	cr74	cr73	cr72	cr71	cr70
Register 19	xx	xx	cr65	cr64	cr63	cr62	cr61	cr60
Register 20	xx	xx	cr55	cr54	cr53	cr52	cr51	cr50
Register 21	xx	xx	cr45	cr44	cr43	cr42	cr41	cr40
Register 22	xx	xx	cr35	cr34	cr33	cr32	cr31	cr30
Register 23	xx	xx	cr25	cr24	cr23	cr22	cr21	cr20
Register 24	xx	xx	cr15	cr14	cr13	cr12	cr11	cr10
Register 25	XX	xx	cr05	cr04	cr03	cr02	cr01	cr00

8 x 6 bit words for CR component.

Default Value :	R0, B0, C0	CR(hexa)	Color	(75% white to black)
	111	20	white	cr7x
	110	23	yellow	cr6x
	101	31	magenta	cr5x
	100	35	red	cr4x
	011	0B	cyan	cr3x
	010	0E	green	cr2x
	001	1C	blue	cr1x
	000	20	black	cr0x

Register Paletcb (Read/Write)

	MSB							LSB
	d7	d6	d5	d4	d3	d2	d1	d0
Read Mode :								
Register 26	Reg26,d5	Reg26,d5	cb75	cb74	cb73	cb72	cb71	cb70
Register 27	Reg27,d5	Reg27,d5	cb65	cb64	cb63	cb62	cb61	cb60
Register 28	Reg28,d5	Reg28,d5	cb55	cb54	cb53	cb52	cb51	cb50
Register 29	Reg29,d5	Reg29,d5	cb45	cb44	cb43	cb42	cb41	cb40
Register 30	Reg30,d5	Reg30,d5	cb35	cb34	cb33	cb32	cb31	cb30
Register 31	Reg31,d5	Reg31,d5	cb25	cb24	cb23	cb22	cb21	cb20
Register 32	Reg32,d5	Reg32,d5	cb15	cb14	cb13	cb12	cb11	cb10
Register 33	Reg33,d5	Reg33,d5	cb05	cb04	cb03	cb02	cb01	cb00
Write Mode :								
Register 26	xx	xx	cb75	cb74	cb73	cb72	cb71	cb70
Register 27	xx	xx	cb65	cb64	cb63	cb62	cb61	cb60
Register 28	xx	xx	cb55	cb54	cb53	cb52	cb51	cb50
Register 29	xx	xx	cb45	cb44	cb43	cb42	cb41	cb40
Register 30	xx	xx	cb35	cb34	cb33	cb32	cb31	cb30
Register 31	xx	xx	cb25	cb24	cb23	cb22	cb21	cb20
Register 32	xx	xx	cb15	cb14	cb13	cb12	cb11	cb10
Register 33	XX	XX	cb05	cb04	cb03	cb02	cb01	cb00

8 x 6 bit words for CB component.

Default Value: R0, B0, C0 CB(hexa) Color (75% white to black)

111	20	white	cb7x
110	0B	yellow	cb6x
101	2E	magenta	cb5x
100	19	red	cb4x
011	27	cyan	cb3x
010	12	green	cb2x
001	35	blue	cb1x
000	20	black	cb0x

Register 34 Autotest

MSB

	d7	d6	d5	d4	d3	d2	d1	d0
Testauto Off	0	0	0	0	0	0	0	0
Testauto On	1	0	0	0	0	0	0	0

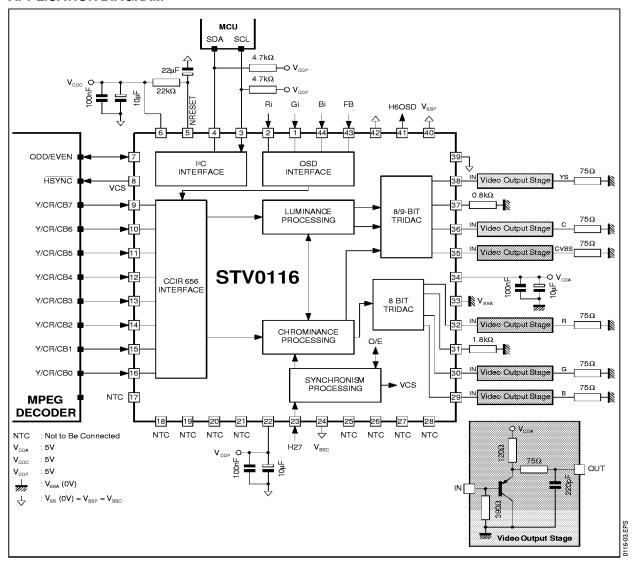
Register 35 Status (Read)

		М	SB							LSB
			17	d6	d5	d4	d3	d2	d1	d0
Regis	ter 35	h	ok	atfr	std1	std0	sym1	sym0	sys1	sys0
	hok 0 1		Multi	ming decoo ole errors 1 error	ding of ODE	D/EVEN sig	nal from YC	CRCB		
	atfr 0 1		Enco	der not syn		nchronized				
(*)	std1 0 0 1	std0 0 1 0	PAL	dard selecti BDGHI N (Argentin C M						
(*)	sym1 0 1			ole de : free-ru		n case of O ne) and sla		suppressio	n (with a tin	ne constant
(*)	sym0 0 1		ODD	/EVEN inpu		rce in slave m EAV)	e mode			
(*)	sys1 0 1		Sync Posit Nega		oolarity					
(*)	sys0 0 1		Sync	hro on ODI	: ODD/EVE D/EVEN fall D/EVEN risi	ling edge				

Note: SIGNAL QUALITY DETECTOR by use of hamming decoding on EAV, SAV in YCRCB input.

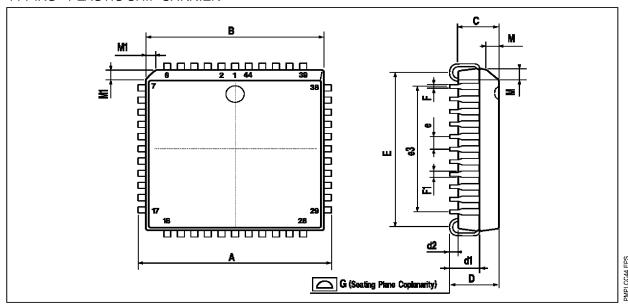
Register Compression (Read/Write)

•	`	,						
	MSB							LSB
	d7	d6	d5	d4	d3	d2	d1	d0
Read Mode:								
Register 36	lc9	lc8	lc7	lc6	lc5	lc4	lc3	lc2
Register 37	lc1	lc0	lf9	lf8	lf7	lf6	lf5	lf4
Register 38	lf3	lf2	lf1	lf0	0	0	0	0
Write Mode :								
Register 36	lf9	lf8	lf7	lf6	lf5	lf4	lf3	lf2
Register 37	lf1	IfO	lc9	lc8	lc7	lc6	lc5	lc4
Register 38	lc3	lc2	lc1	lc0	x	x	×	×


It is used to compress on line fonctionnal patterns. "Ic" is the line number value* on which the polynomial line counter $(1 + x^3 + x^{10})$ is forced (when it occurs) with 'lf' value.

(*)

On reset 'lf' = 001, 'lc' = 000 (line counter never goes to 000 value) 1st byte : 00, 2nd byte : 00 hex, 3rd byte : 10 (Read) 1st byte: 00, 2nd byte: 40 hex, 3rd byte: 00 (Write)



APPLICATION DIAGRAM

PACKAGE MECHANICAL DATA

44 PINS - PLASTIC CHIP CARRIER

Dimensions	Millimeters			Inches		
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	17.4		17.65	0.685		0.695
В	16.51		16.65	0.650		0.656
С	3.65		3.7	0.144		0.146
D	4.2		4.57	0.165		0.180
d1	2.59		2.74	0.102		0.108
d2		0.68			0.027	
E	14.99		16	0.590		0.630
е		1.27			0.050	
e3		12.7			0.500	
F		0.46			0.018	
F1		0.71			0.028	
G			0.101			0.004
М		1.16			0.046	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

