

8-BIT CONSTANT CURRENT LED SINK DRIVER WITH FULL OUTPUT DETECTION

- 8 CONSTANT CURRENT OUTPUT CHANNELS
- ADJUSTABLE OUTPUT CURRENT THROUGH ONE EXTERNAL RESISTOR
- OPEN AND SHORT LINE, SHORT TO GND, SHORT TO V-LED SUPPLY ERROR DETECTION
- SERIAL DATA IN/PARALLEL DATA OUT
- SERIAL OUT CHANGE STATE ON THE FALLING EDGES OF CLOCK
- OUTPUT CURRENT: 20-120 mA
- 25 MHz CLOCK FREQ.

DESCRIPTION

The STP08CDC596 is a monolithic, medium-voltage, low current power 8-bit shift register designed for LED panel display. The STP08CDC596 contains a 8-bit serial-in, parallel-out shift register that feeds a 8-bitD-type storage register. In the output stage, eight regulated current sources were designed to provide 15-120mA constant current to drive the LEDs.

The STP08CDC596 contains the built-IN error detection feature. The device performs this additional function without any increase of the pin number and any change of the pin function, if compared to the standard device without error detection. Consequently, choosing this device does not mean to change the footprint on the board. To perform this functionality mode, the device needs a digital key coming from the Microprocessor. The STP08CDC596 is able to detect: open and short on the LED line, short to

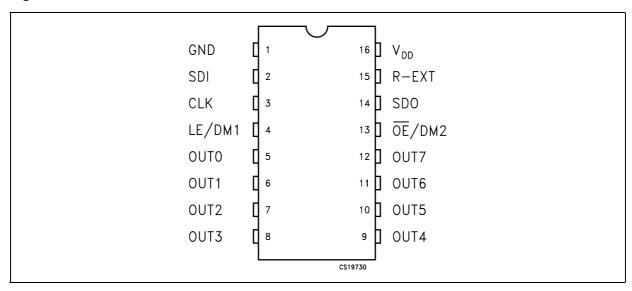
GND, short to Led voltage supply. The data mapping of output channels status detection is provided by a feedback from the serial output to the Microprocessor.

Trough an external resistor, users may adjust the STP08CDC596 output current, controlling the light intensity of LEDs.

The STP08CDC596 guarantees 16V output driving capability, allowing users to connect more LEDs in series. The high clock frequency, 25 MHz, also satisfies the system requirement of high volume data transmission.

The device is offered in DIP-16, SO-16 and TSSOP-16 packages.

The STP08CDC596 is well suitable for traffic display signs where the detection feature is strongly required.


Table 1: Order Codes

Туре	Temp. Range	Package	Comments
STP08CDC596B1	-40°C to 125°C	DIP-16	25 part per tube
STP08CDC596M	-40°C to 125°C	SO-16 (Tube)	50 parts per tube
STP08CDC596MTR	-40°C to 125°C	SO-16 (Tape & Reel)	2500 parts per reel
STP08CDC596TTR	-40°C to 125°C	TSSOP16 (Tape & Reel)	2500 parts per reel

Table 2: Current Accuracy

Output Voltage	Current	Output Current	
Output voltage	Between bits	Between ICs	Output Current
≥ 0.7V	TYP. ± 3%	± 10%	20 to 120 mA

Figure 1: Pin Connection

Table 3: Pin Description

PIN N°	Symbol	Name and Function
1	GND	Ground Terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE/DM1	Latch input terminal
5-12	OUT 0-7	Output terminal
13	OE/DM2	Output enable input terminal (active low)
14	SDO	Serial data out terminal
15	R-EXT	Constant Current programming
16	V_{DD}	5V Supply voltage terminal

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	0 to 7	V
Vo	Output Voltage	-0.5 to 16	V
Io	Output Current	120	mA
V _I	Input Voltage	-0.4 to V _{DD} +0.4	V
I _{GND}	GND Terminal Current	980	mA
f _{CLK}	Clock Frequency	25	MHz
T _{OPR}	Operating Temperature Range	-40 to +125	°C
T _{STG}	Storage Temperature Range	-55 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 5: Thermal Data

Symbol	Parameter	DIP-16	SO-16	TSSOP16	Unit
R _{thj-amb}	Thermal Resistance Junction-ambient	90	125	140	°C/W

Table 6: Recommended Operating Conditions

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply Voltage		3.3		5.5	V
Vo	Output Voltage				16.0	V
Io	Output Current	OUTn	15		120	mA
I _{OH}	Output Current	SERIAL-OUT			+1	mA
I _{OL}	Output Current	SERIAL-OUT			-1	mA
V _{IH}	Input Voltage		0.7V _{DD}		V _{DD} +0.3	V
V _{IL}	Input Voltage		-0.3		0.3V _{DD}	V
t _{wLAT}	LE/DM1 Pulse Width	V _{DD} = 3.0 to 3.6V		10	20	ns
t _{wCLK}	CLK Pulse Width			10	20	ns
t _{wEN}	OE/DM2 Pulse Width (1)			120	400	ns
t _{SETUP(D)}	Setup Time for DATA			5	20	ns
t _{HOLD(D)}	Hold Time for DATA			4	15	ns
t _{SETUP(L)}	Setup Time for LATCH			8	15	ns
f _{CLK}	Clock Frequency (2)				25	MHz

⁽¹⁾ If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please considered the timings carefully. (2) In normal mode the OE/DM2 must remain low at least two clock cycles.

Table 7: Electrical Characteristics (V_{DD} =5V, T = 25 $^{\circ}$ C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IH}	Input Voltage High Level		0.7V _{DD}		V_{DD}	V
V _{IL}	Input Voltage Low Level		GND		0.3V _{DD}	V
I _{OH}	Output Leakage Current	V _{OH} = 16 V			10	μΑ
V _{OL}	Output Voltage (Serial-OUT)	I _{OL} = 1mA			0.4	V
V _{OH}	Output Voltage (Serial-OUT)	I _{OH} = -1mA	V _{DD} -0.4V			V
I _{OL1}	Output Current	$V_{O} = 0.7V R_{EXT} = 910 \Omega$	18.8	20.9	24.00	mA
I _{OL2}		$V_{O} = 0.7V R_{EXT} = 360 \Omega$	46.00	51.5	56.5	mA
Δl _{OL1}	Output Current Error	$V_{O} = 0.7V R_{EXT} = 910 \Omega$		± 2	± 5	%
Δl _{OL2}	between bit (All Output ON)	$V_{O} = 0.7V R_{EXT} = 360 \Omega$		± 1	± 4	%
R _{SIN(up)}	Pull-up Resistor		150	300	600	ΚΩ
R _{SIN(down)}	Pull-down Resistor		100	200	400	ΚΩ
I _{DD(OFF1)}	Supply Current (OFF)	R _{EXT} = OPEN OUT 0 to 7 = OFF		0.45	0.7	mA
I _{DD(OFF2)}		$R_{EXT} = 910 \Omega$ OUT 0 to 7 = OFF		3.0	6.0	
I _{DD(OFF3)}		$R_{EXT} = 360 \Omega$ OUT 0 to 7 = OFF		8.2	12.0	
I _{DD(ON1)}	Supply Current (ON)	$R_{EXT} = 910 \Omega$ OUT 0 to 7 = ON		3.1	6.2	
I _{DD(ON2)}		$R_{EXT} = 360 \Omega$ OUT 0 to 7 = ON		8.4	12.8	

Table 8: Switching Characteristics (V_{DD} =3.3 to 5.5V, T = 25°C, unless otherwise specified.)

Symbol	Parameter	Test Cor	nditions	Min.	Тур.	Max.	Unit
t _{PLH1}	Propagation Delay Time, <u>CL</u> K-OUTn, LE/DM1 = H, OE/DM2 = L	$V_{DD} = 3 V$ $V_{IL} = GND$	$V_{IH} = V_{DD}$ $C_L = 13pF$		180	280	ns
t _{PLH2}	Propagation Delay Time, LE/DM1-OUTn, OE/DM2 = L	$I_O = 40 \text{mA}$ $R_{EXT} = 470 \Omega$	$V_L = 3 V$ $R_1 = 65 \Omega$		150	280	ns
t _{PLH3}	Propagation Delay Time, OE/DM2-OUTn, LE/DM1 = H	THEAT WEST			140	280	ns
t _{PLH}	Propagation Delay Time, CLK-SDO				25	35	ns
t _{PHL1}	Propagation Delay Time, CLK-OUTn, LE/DM1 = H, OE/DM2 = L				30	60	ns
t _{PHL2}	Propagation Delay Time, LE/DM1-OUTn, OE/DM2 = L				30	50	ns
t _{PHL3}	Propagation Delay Time, OE/DM2-OUTn, LE/DM1 = H				35	70	ns
t _{PHL}	Propagation Delay Time, CLK-SDO				30	40	ns
t _r	Output Rise Time				220		ns
t _f	Output Fall Time				20		ns

EQUIVALENT CIRCUIT OF INPUTS AND OUTPUTS

Figure 2: OE/DM2 Terminal

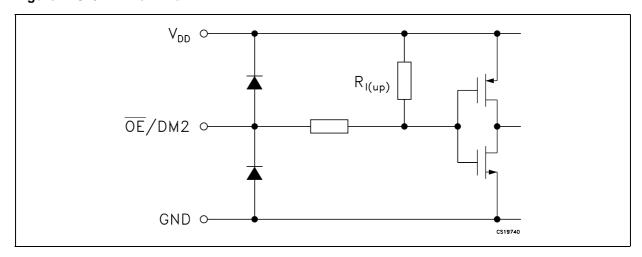


Figure 3: LE/DM1 Terminal

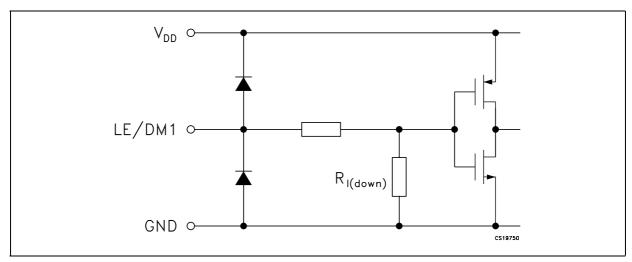


Figure 4: CLK, SDI Terminal

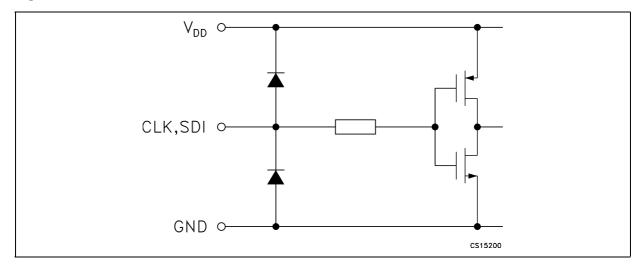


Figure 5: SDO Terminal

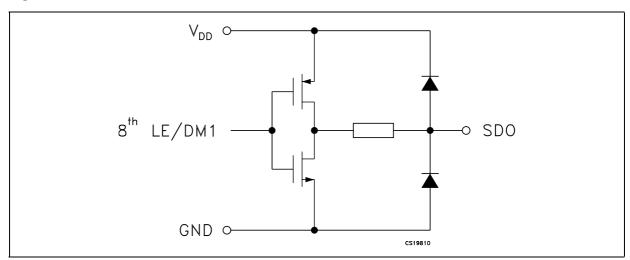


Figure 6: Block Diagram

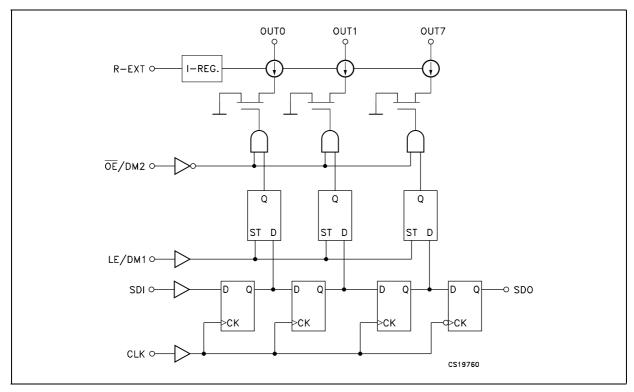
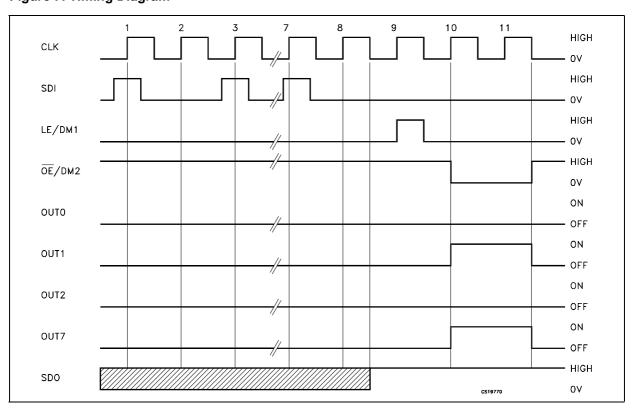



Figure 7: Timing Diagram

In normal mode the $\overline{\text{OE}}/\text{DM2}$ must remain low at least two clock cycles.

Figure 8: Clock, Serial-In, Serial-Out

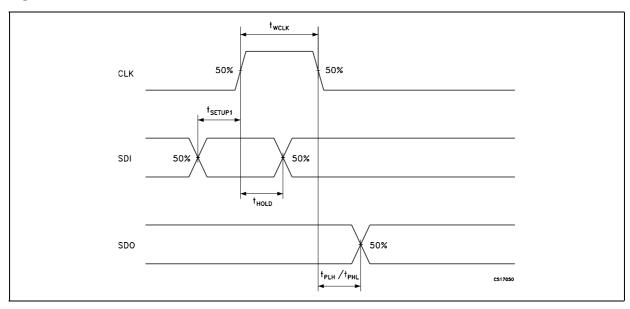


Figure 9: Clock, Serial-In, Latch, Enable, Outputs

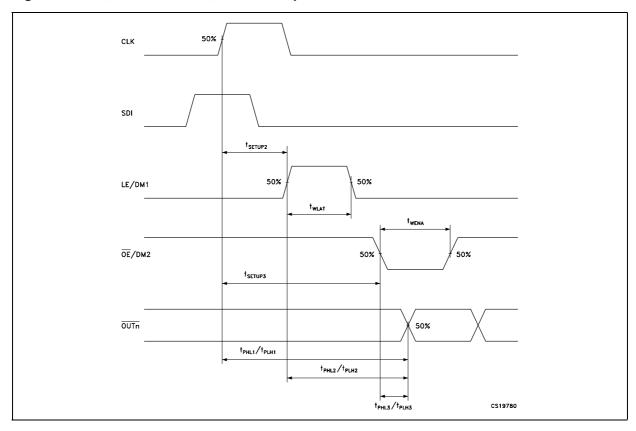
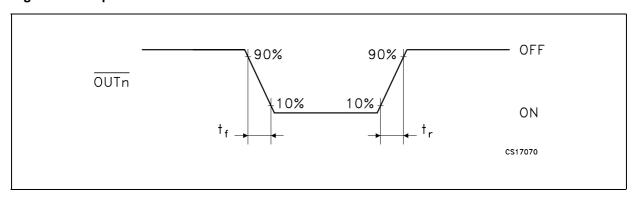



Figure 10: Outputs

TEST CIRCUIT

Figure 11: DC Characteristic

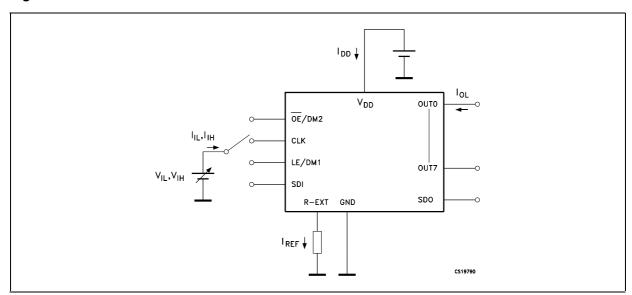
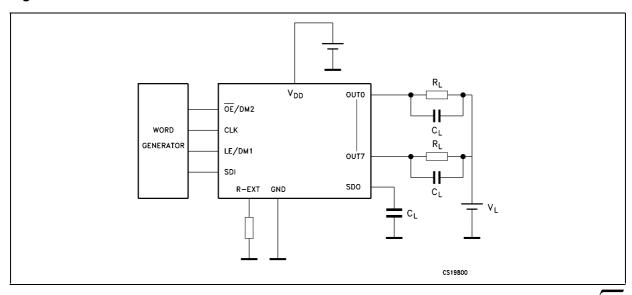
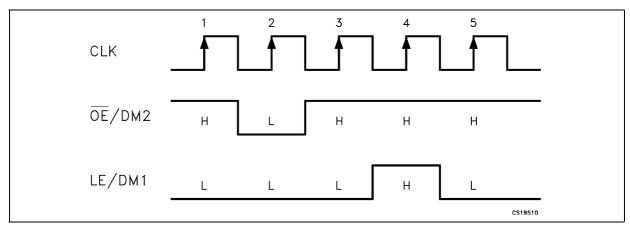



Figure 12: AC Characteristic

RUNNING THE DETECTION MODE

Phase One: "Entering In Detection Mode"

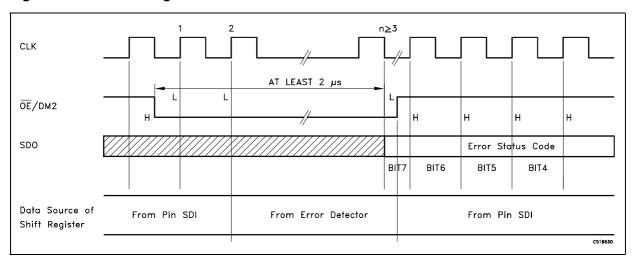

From the "Normal Mode" condition the device can switch to the "Error Detection Mode" by a logic

sequence on the OE/DM2 and LE/DM1 pins as showed in the following Table and Diagram:

Table 9: Entering In Detection Truth Table

CLK	1°	2°	3°	4°	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	Н	L

Figure 13: Entering In Detection Timing Diagram


After these five CLK cycles the device goes into the" Error Detection Mode" and at the 6th rise front of CLK the SDI data are ready for the sampling.

Phase Two: "Error Detection"

The eight data bits must be set "1" in order to set ON all the outputs during the detection. The data are latched by LE/DM1 and after that the outputs are ready for the detection process. When the

Micro controller switches the OE/DM2 to LOW, the device drives the LEDs in order to analyze if an OPEN or SHORT condition has occurred.

Figure 14: Detection Diagram

The LEDs status will be detected al least in 2 microseconds and after this time the micro controller puts OE in HIGH state and the output data detection result will go to the microprocessor via SDO.

The detection data format is the same of data in normal mode. As soon as all the detection data bits are available on the serial line, the device may go back to normal mode operation.

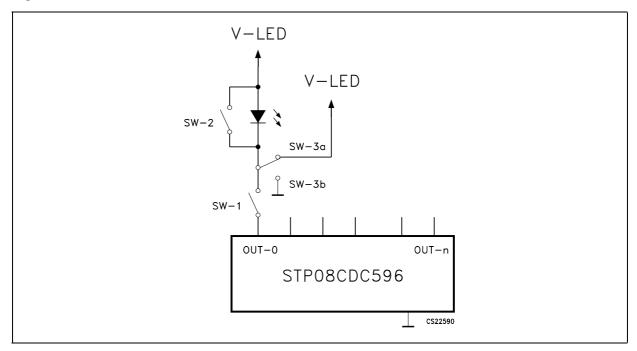
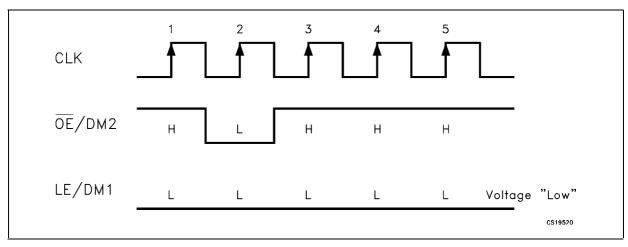

CONDITIONS IN ORDER TO GET A SUCCESSFULLY DETECTION CONDITION

Table 10: Detection Condition (V_{DD} = 3.3 to 5 V Temp. Range -40 to 85°C)

SW-1 or SW-3b	Open Line or Output Short to GND detected	==> I _{ODEC} ≤ 0.5 x I _O	No error detected	==> I _{ODEC} ≥ 0.5 x I _O
SW-2 or SW-3a	Short on LED or Short to V-LED detected	==> V _O ≥ 2.4 V	No error detected	==> V _O ≤ 2.2 V

where: I_O = the output current programmed by the R_{EXT} , I_{ODEC} = the detected output current in detection mode.

Figure 15: Detection Mode


Phase Three: "Resuming to Normal Mode"

The sequence for re-entering in normal mode is showed in the following Table and diagram:

Table 11: Resuming to Normal Mode Timing Diagram

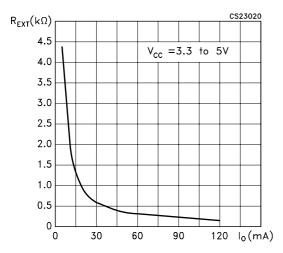
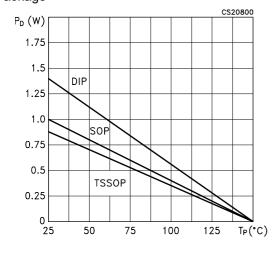
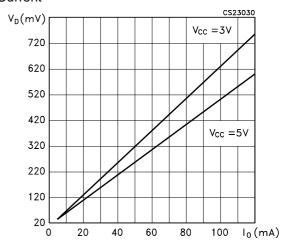

CLK	1°	2°	3°	4°	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	L	L

Figure 16: Resuming to Normal Mode Timing Diagram



For proper device operation the "Entering in detection" sequence must be follow by a "Resume Mode" sequence, isn't possible to insert consecutive equal sequence.


Figure 17: Typical Output Current-R_{EXT} Resistor

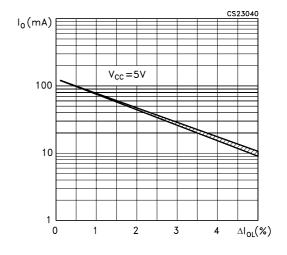

Figure 18: Power Dissipation vs Temperature Package

Figure 19: Typical Dropout Voltage vs Output Current

Figure 20: Typical Output Current vs $\pm \Delta I_{OL}(\%)$

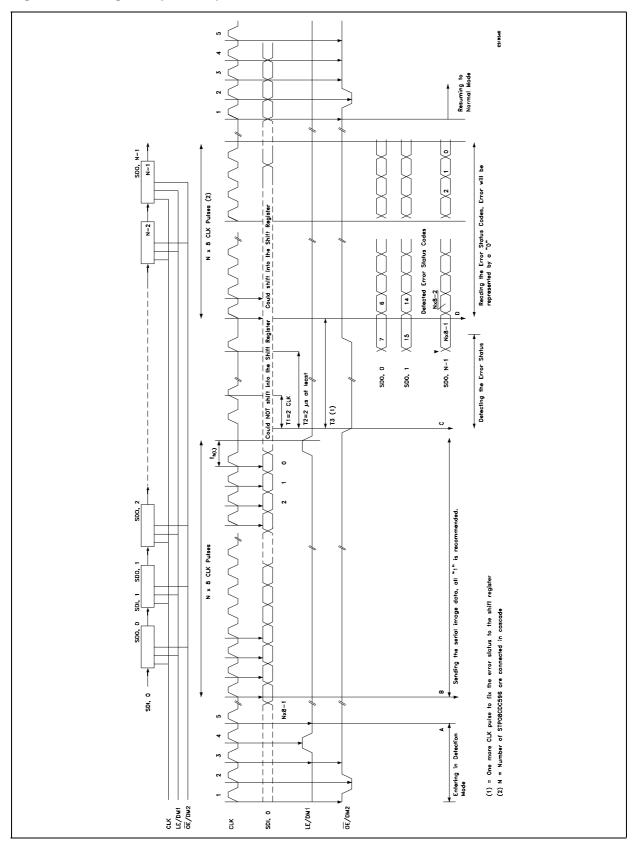
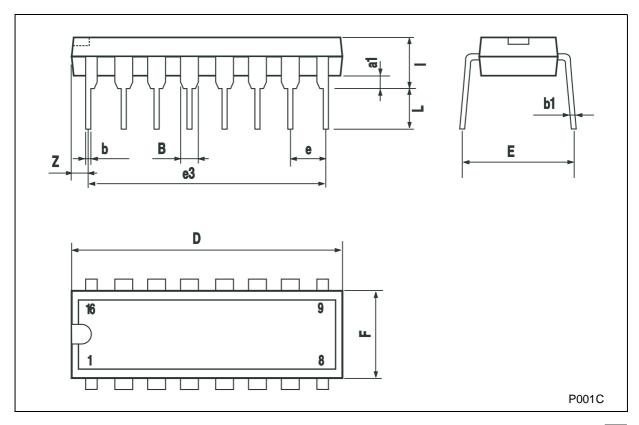
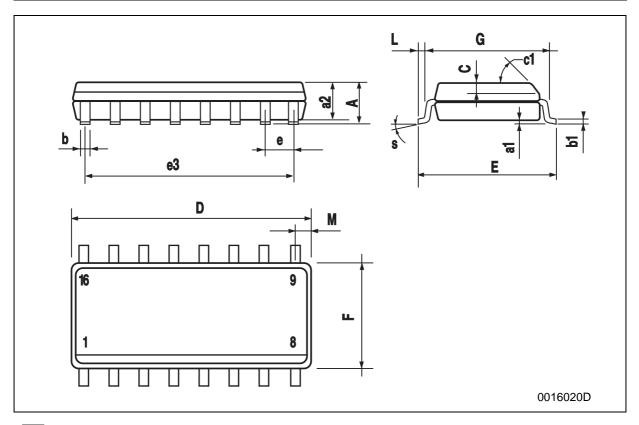
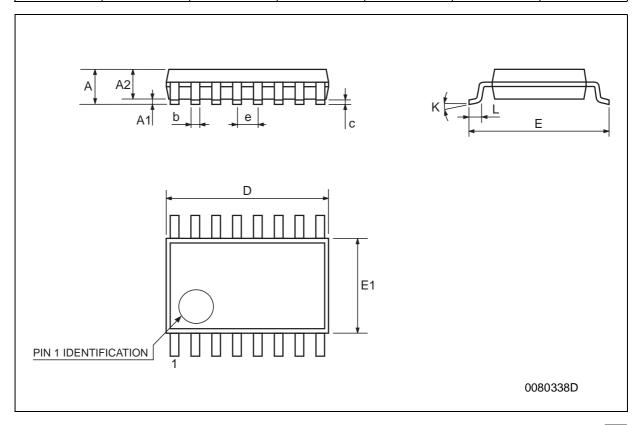



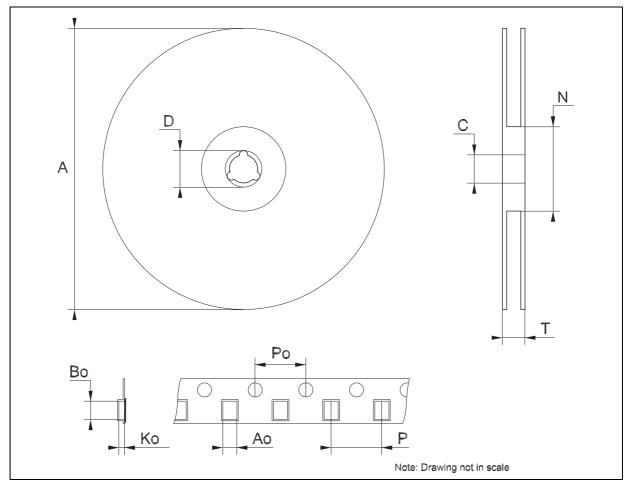
Figure 21: Timing example for Open and/or Short detection


Plastic DIP-16 (0.25) MECHANICAL DATA

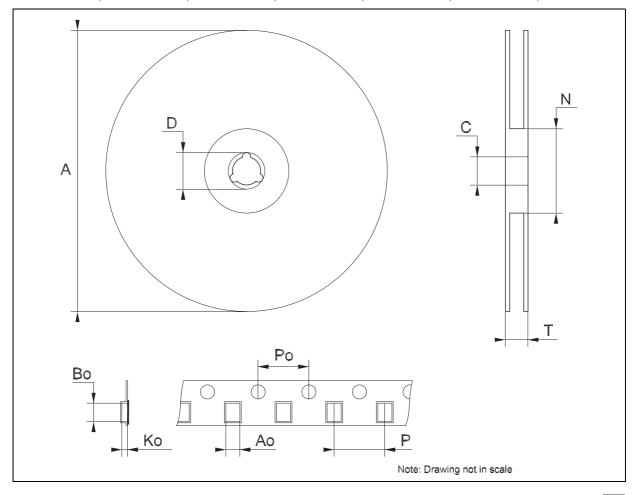
DIM.		mm.			inch	
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050


SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.004		0.010
a2			1.64			0.063
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S	8° (max.)					


TSSOP16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0079
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
К	O°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030


Tape & Reel SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.45		6.65	0.254		0.262
Во	10.3		10.5	0.406		0.414
Ко	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Tape & Reel TSSOP16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.7		6.9	0.264		0.272
Во	5.3		5.5	0.209		0.217
Ko	1.6		1.8	0.063		0.071
Ро	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Table 12: Revision History

Date	Revision	Description of Changes
15-Jun-2005	1	First Release.
11-Oct-2005	2	Minor Revision

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

