50GH128T供应商 SK50GH128

捷多邦,专业PCB打样工厂,24小时加急出货

SEMITOP[®]4

IGBT module

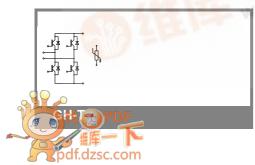
SK50GH128T

Target Data

Features

- One screw mounting module
 Fully compatible with SEMITOP[®]1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

Typical Applications


• Voltage regulator

Absolute	Maximum Ratings	Т _с	= 25 °C, unless otherwise sp	ecified
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 125 °C	T _s = 25 °C	70	А
		T _s = 70 °C	50	А
I _{CRM}	I_{CRM} = 2 x I_{Cnom} , $t_p \le 1ms$		100	А
V _{GES}			20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C		μs
Inverse D	Diode	48.1	W W WY	
I _F	T _j = 150 °C	T _s = 25 °C	67	A
- 15	200	T _s = 70 °C	50	А
IFRM	I_{FRM} = 2 x I_{Fnom} , $t_p \le 1ms$		150	А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 125 °C	550	A
Module				
I _{t(RMS)}			17.50	А
Τ _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.	ACCES NO	2500	V

Characteristics T _c =			25 $^\circ\text{C},$ unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT	50.0						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 2 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,1	mA	
		T _j = 125 °C		0,2	2.60	mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 125 °C	Con I	270	200	nA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 125 °C	WW	1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		12		mΩ	
	2.69 600	T _j = 125°C		22		mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,9	2,3	V	
	50.00	T _j = 125°C _{chiplev.}		2,1		V	
Cies				4,5		nF	
C _{oes}	V_{CE} = , V_{GE} = V	f = MHz		0,33		nF	
C _{res}				0,21	-1.60	nF	
t _{d(on)}						ns	
t _r	R _{Gon} = 15 Ω	$V_{\rm CC} = 600V$	RB-	6		ns	
E _{on}	R _{Goff} = 15 Ω	I _{Cnom} = 50A T _i = 125 °C	W.m.	0		mJ ns	
t _{d(off)} t _f	Gott	.,				ns	
E _{off}	IN DIG	200		4,6		mJ	
R _{th(j-s)}	per IGBT	1		0,51		K/W	

WW.DZS

SK50GH128T

SEMITOP[®]4

IGBT module

SK50GH128T

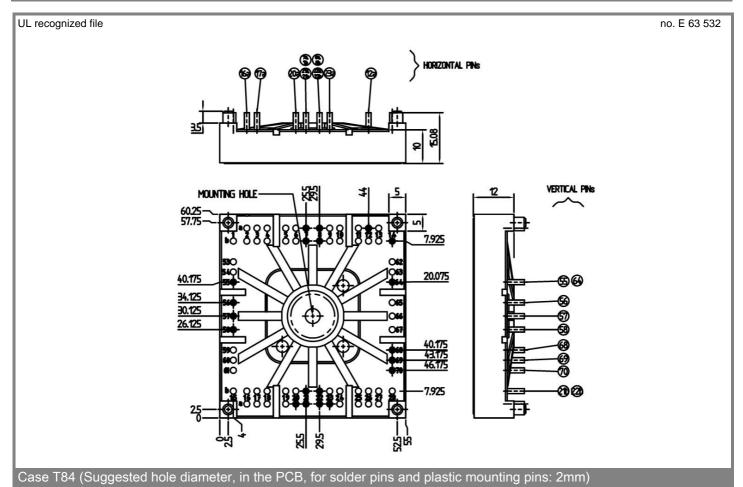
Target Data

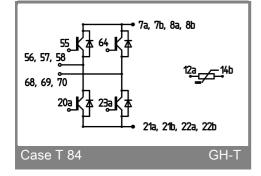
Features

- One screw mounting module
- Fully compatible with SEMITOP[®]1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

Typical Applications

• Voltage regulator


Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
	I _{Fnom} = 100 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2		V
		T _j = 125 °C _{chiplev.}		1,8		V
V _{F0}		T _j = 125 °C		1	1,2	V
r _F		T _j = 125 °C		16	22	mΩ
I _{RRM}	I _{Fnom} = 100 A	T _j = 125 °C				Α
Q _{rr}						μC
E _{rr}	V _{CC} =600V			4		mJ
R _{th(j-s)D}	per diode			0,7	0,85	K/W
Freewhee	eling Diode					
$V_F = V_{EC}$	I _{Fnom} = A; V _{GE} = V	T _j = °C _{chiplev.}				V
V _{F0}		T _j = °C				V
r _F		T _j = °C				V
I _{RRM}	I _{Enom} = A	T _i = °C				Α
Q _{rr}		5				μC
E _{rr}						mJ
	per diode					K/W
M _s	to heat sink				3,5	Nm
w				60		g
Temperat	ture sensor					
R ₁₀₀	T _s = 100°C (R ₂₅ =5kΩ)			493±5%		Ω


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK50GH128T

