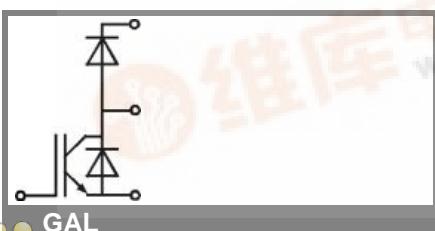


SK50GAL067

IGBT Module

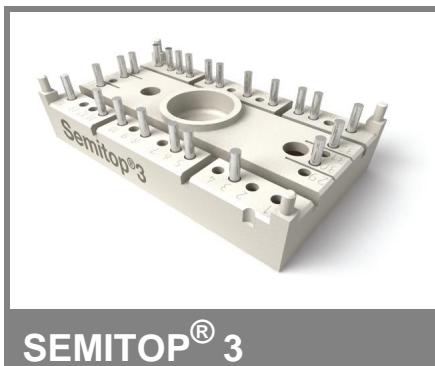
SK50GAL067


Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive $V_{ce,sat}$ temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- Low threshold voltage

Typical Applications


- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS

Symbol		Conditions	$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	$T_j = 25^\circ\text{C}$		600		V
I_C	$T_j = 125^\circ\text{C}$	$T_s = 25^\circ\text{C}$	83		A
		$T_s = 80^\circ\text{C}$	54		A
I_{CRM}	$I_{CRM} = 2 \times I_{Cnom}$		240		A
V_{GES}			± 20		V
t_{psc}	$V_{CC} = 300\text{ V}$; $V_{GE} \leq 20\text{ V}$; $T_j = 125^\circ\text{C}$ $V_{CES} < 600\text{ V}$		10		μs
Inverse Diode					
I_F	$T_j = 125^\circ\text{C}$	$T_s = 25^\circ\text{C}$	90		A
		$T_s = 80^\circ\text{C}$	56		A
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$				A
I_{FSM}	$t_p = 10\text{ ms}$; sinusoidal	$T_j = {}^\circ\text{C}$	360		A
Freewheeling Diode					
I_F	$T_j = 125^\circ\text{C}$	$T_{case} = 25^\circ\text{C}$	90		A
		$T_{case} = 80^\circ\text{C}$	56		A
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$				A
I_{FSM}	$t_p = 10\text{ ms}$; sinusoidal	$T_j = {}^\circ\text{C}$	360		A
Module					
$I_{t(RMS)}$					A
T_{vj}			-40 ... +150		${}^\circ\text{C}$
T_{stg}			-40 ... +125		${}^\circ\text{C}$
V_{isol}	AC, 1 min.		2500		V

Symbol		Conditions	$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions		min.	typ.	max.
IGBT					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1,2\text{ mA}$		3	4	5
I_{CES}	$V_{GE} = 0\text{ V}$, $V_{CE} = V_{CES}$	$T_j = 25^\circ\text{C}$			0,008
I_{GES}	$V_{CE} = 0\text{ V}$, $V_{GE} = 20\text{ V}$	$T_j = 25^\circ\text{C}$			480
V_{CE0}		$T_j = 150^\circ\text{C}$			2
r_{CE}	$V_{GE} = 15\text{ V}$	$T_j = 150^\circ\text{C}$			$\text{m}\Omega$
$V_{CE(sat)}$	$I_{Cnom} = 120\text{ A}$, $V_{GE} = 15\text{ V}$	$T_j = 25^\circ\text{C}_{\text{chiplev.}}$	2,8	3,15	V
		$T_j = 125^\circ\text{C}_{\text{chiplev.}}$	3,5	4	V
C_{ies}			6		nF
C_{oes}	$V_{CE} = 25$, $V_{GE} = 0\text{ V}$	$f = 1\text{ MHz}$	0,6		nF
C_{res}			0,37		nF
$t_{d(on)}$			22		ns
t_r	$R_{Gon} = 6\text{ }\Omega$	$V_{CC} = 400\text{ V}$	10		ns
E_{on}		$I_{Cnom} = 120\text{ A}$	2,7		mJ
$t_{d(off)}$	$R_{Goff} = 6\text{ }\Omega$	$T_j = 125^\circ\text{C}$	280		ns
t_f		$V_{GE} = \pm 15\text{ V}$	26		ns
E_{off}			1,9		mJ
$R_{th(j-s)}$	per IGBT			0,45	K/W

SK50GAL067

IGBT Module

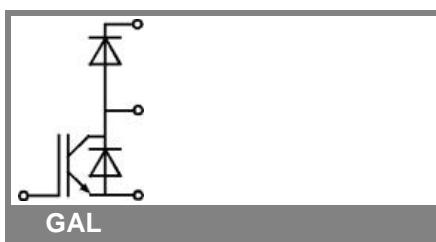
SK50GAL067

Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive $V_{ce,sat}$ temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- Low threshold voltage

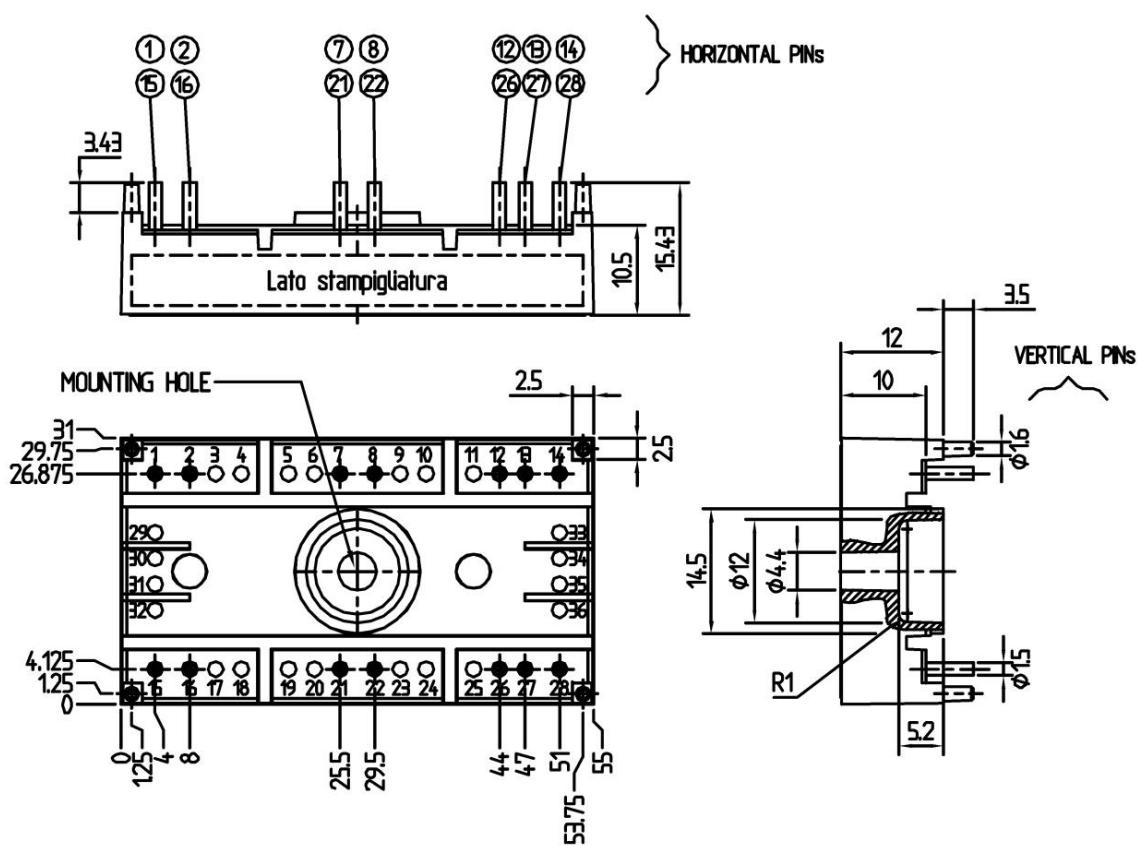
Typical Applications

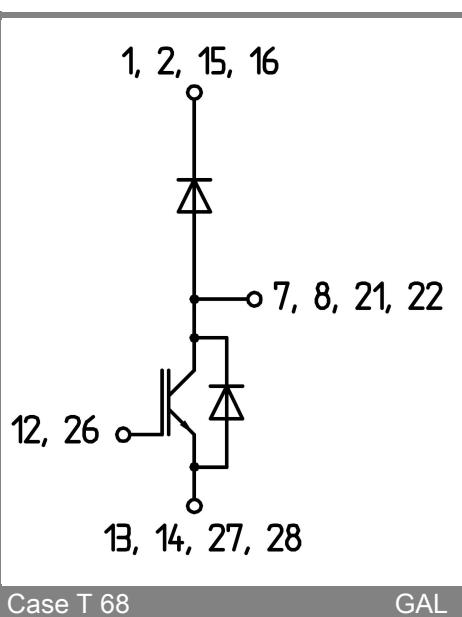

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS

Characteristics

Symbol	Conditions	min.	typ.	max.	Units
Inverse Diode					
$V_F = V_{EC}$	$I_{Fnom} = 120 \text{ A}$; $V_{GE} = 0 \text{ V}$ $T_j = 25 \text{ }^\circ\text{C}_{\text{chiplev.}}$ $T_j = 125 \text{ }^\circ\text{C}_{\text{chiplev.}}$		2 1,25		V V
V_{F0}	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 150 \text{ }^\circ\text{C}$		1		V V
r_F	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 150 \text{ }^\circ\text{C}$		4		$\text{m}\Omega$ $\text{m}\Omega$
I_{RRM} Q_{rr} E_{off}	$I_{Fnom} = 120 \text{ A}$ $\text{di/dt} = -100 \text{ A}/\mu\text{s}$ $V_R = 600\text{V}$	$T_j = 125 \text{ }^\circ\text{C}$			A μC mJ
$R_{th(j-s)D}$	per diode			0,8	K/W
Freewheeling Diode					
$V_F = V_{EC}$	$I_{Fnom} = 120 \text{ A}$; $V_{GE} = 0 \text{ V}$ $T_j = 25 \text{ }^\circ\text{C}_{\text{chiplev.}}$ $T_j = 125 \text{ }^\circ\text{C}_{\text{chiplev.}}$		2 1,25		V V
V_{F0}	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 150 \text{ }^\circ\text{C}$		1		V V
r_F	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 150 \text{ }^\circ\text{C}$		4		V V
I_{RRM} Q_{rr} E_{off}	$I_{Fnom} = 120 \text{ A}$ $\text{di/dt} = -100 \text{ A}/\mu\text{s}$ $V_R = 600\text{V}$	$T_j = 125 \text{ }^\circ\text{C}$			A μC mJ
$R_{th(j-s)FD}$	per diode			0,8	K/W
M_s	to heat sink	2,25	2,5		Nm
w			29		g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.


SK50GAL067

UL Recognized
File no. E 63 532

Dimensions in mm

Case T68 (Suggested hole diameter, in the PCB, for solder pins and plastic mounting pins: 2mm)

Case T 68

GAL