

SK50GAL065

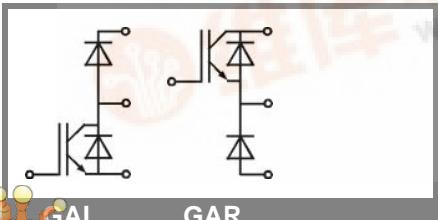
IGBT Module

SK50GAL065

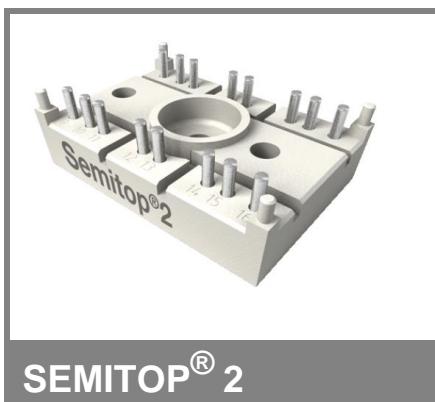
SK50GAR065

Preliminary Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non-Punch-Through IGBT)
- Low tail current with low temperature dependence
- Low threshold voltage

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Symbol		Conditions	T _s = 25 °C, unless otherwise specified		
Symbol	Conditions		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		600		V
I _C	T _j = 125 °C	T _s = 25 °C	54		A
		T _s = 80 °C	40		A
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		60		A
V _{GES}			± 20		V
t _{pSC}	V _{CC} = 300 V; V _{GE} ≤ 20 V; T _j = 125 °C	V _{CES} < 600 V	10		μs
Inverse Diode					
I _F	T _j = 150 °C	T _s = 25 °C	57		A
		T _s = 80 °C	38		A
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		100		A
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	440		A
Freewheeling Diode					
I _F	T _j = 150 °C	T _s = 25 °C	57		A
		T _s = 80 °C	38		A
I _{FRM}			100		A
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	440		A
Module					
I _{t(RMS)}					A
T _{vj}			-40 ... +150		°C
T _{stg}			-40 ... +125		°C
V _{isol}	AC, 1 min.		2500		V

Symbol		Conditions	T _s = 25 °C, unless otherwise specified		
Symbol	Conditions		min.	typ.	max.
IGBT					
V _{GE(th)}	V _{GE} = V _{CE} , I _C = 1,4 mA		3	4	5
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0044
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			240
V _{CEO}		T _j = 25 °C	1,1		V
		T _j = 125 °C	1,1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C	15		mΩ
		T _j = 125°C	19		mΩ
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	2	2,5	V
		T _j = 125°C _{chiplev.}	2,2		V
C _{ies}			3,2		nF
C _{oes}	V _{CE} = 25, V _{GE} = 0 V	f = 1 MHz	0,3		nF
C _{res}			0,18		nF
t _{d(on)}			60		ns
t _r	R _{Gon} = 16 Ω	V _{CC} = 300V	30		ns
E _{on}		I _{Cnom} = 40A	1,1	1,4	mJ
t _{d(off)}	R _{Goff} = 16 Ω	T _j = 125 °C	220	280	ns
t _f		V _{GE} = ±15V	20	26	ns
E _{off}			0,7	0,9	mJ
R _{th(j-s)}	per IGBT			0,85	K/W

SK50GAL065

IGBT Module

SK50GAL065

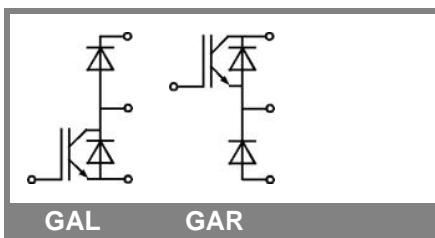
SK50GAR065

Preliminary Data

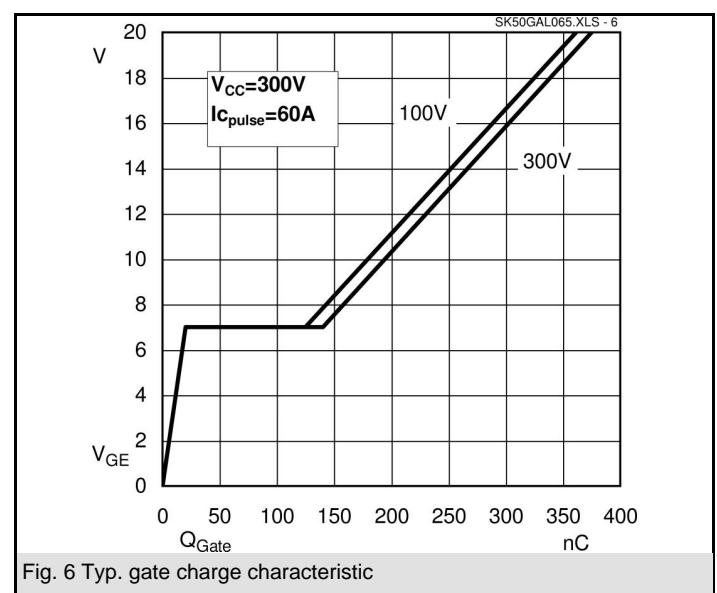
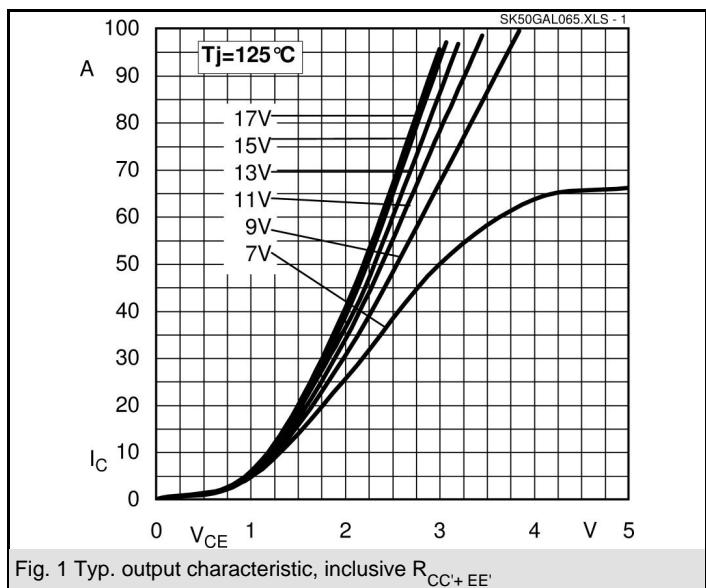
Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non-Punch-Through IGBT)
- Low tail current with low temperature dependence
- Low threshold voltage

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

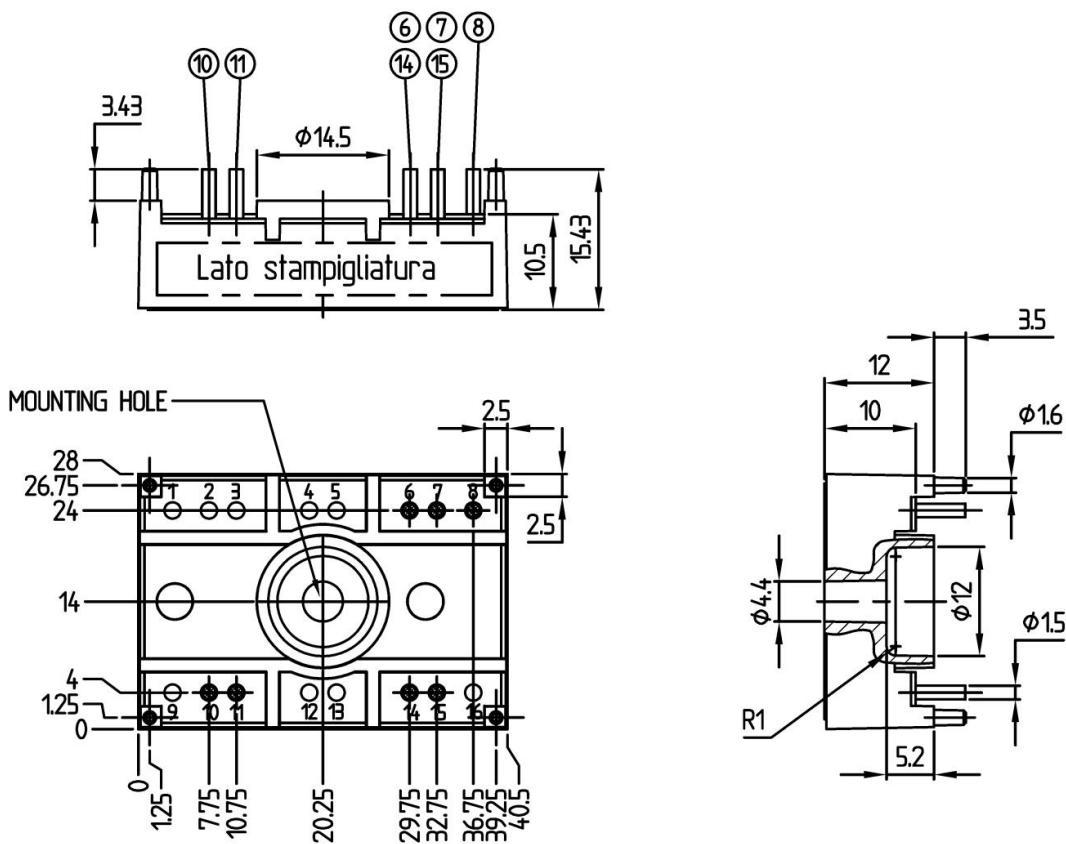
Characteristics



Symbol	Conditions	min.	typ.	max.	Units
Inverse Diode					
$V_F = V_{EC}$	$I_{Fnom} = 30 \text{ A}; V_{GE} = 0 \text{ V}$ $T_j = 25 \text{ }^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150 \text{ }^\circ\text{C}_{\text{chiplev.}}$	1,3	1,5		V
V_{FO}	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 125 \text{ }^\circ\text{C}$		0,85	0,9	V
r_F	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 125 \text{ }^\circ\text{C}$		9	16	$\text{m}\Omega$
I_{RRM}	$I_{Fnom} = 30 \text{ A}$ Q_{rr} E_{rr} $V_{CC} = 300 \text{ V}$	$T_j = 125 \text{ }^\circ\text{C}$	22		A
$R_{th(j-s)D}$	per diode			1,2	K/W
Freewheeling Diode					
$V_F = V_{EC}$	$I_{Fnom} = 30 \text{ A}; V_{GE} = 0 \text{ V}$ $T_j = 25 \text{ }^\circ\text{C}_{\text{chiplev.}}$ $T_j = 125 \text{ }^\circ\text{C}_{\text{chiplev.}}$	1,3	1,5		V
V_{FO}	$T_j = 125 \text{ }^\circ\text{C}$		0,85	0,9	V
r_F	$T_j = 125 \text{ }^\circ\text{C}$		9	16	V
I_{RRM}	$I_{Fnom} = 30 \text{ A}$ Q_{rr} E_{rr} $V_R = 300 \text{ V}$	$T_j = 125 \text{ }^\circ\text{C}$	22		A
$R_{th(j-s)FD}$	per diode			1,2	K/W
M_s	to heat sink			2	Nm
w			19		g

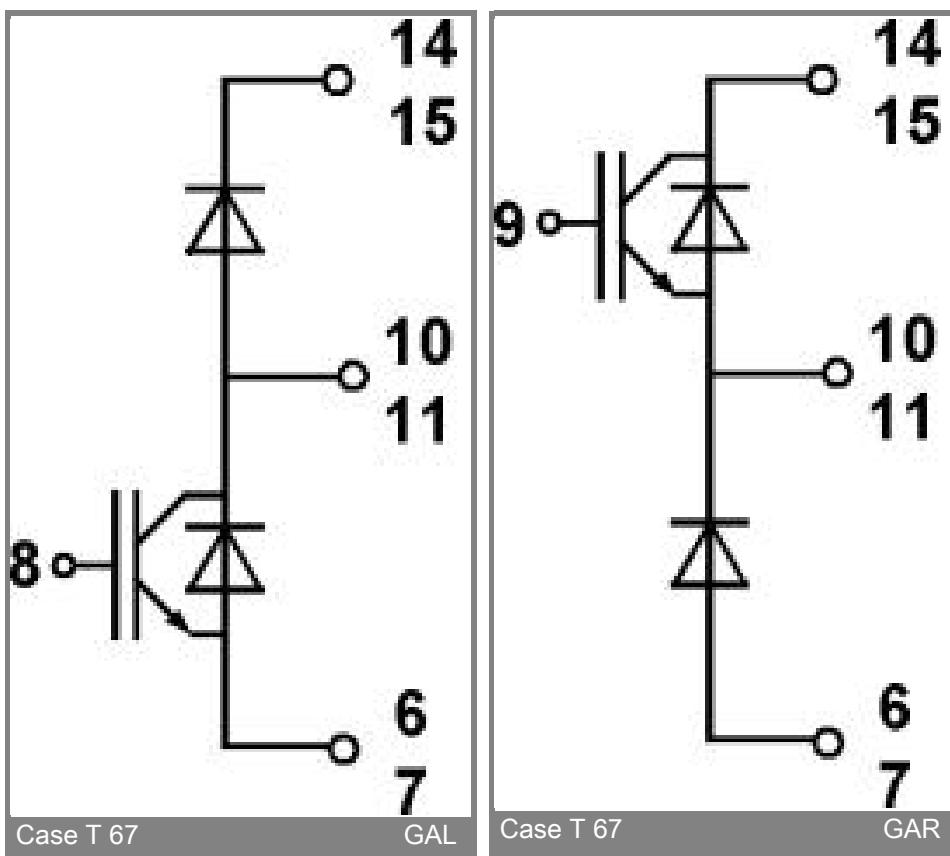
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK50GAL065



SK50GAL065


SK50GAL065

UL recognized file

no. E 63 532

Case T67 (Suggested hole diameter, in the PCB, for solder pins and plastic mounting pins: 2mm)

