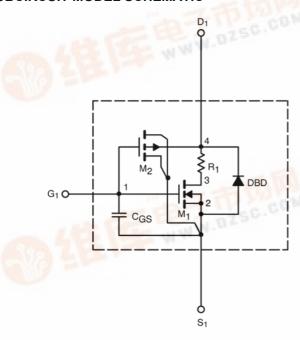


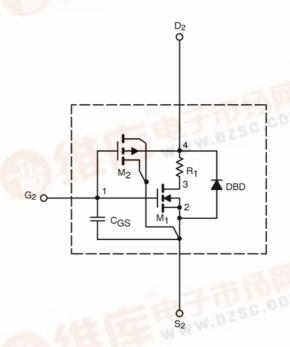
## SPICE Device Model Si7214DN Vishay Siliconix

## **Dual N-Channel 30-V (D-S) MOSFET**

#### **CHARACTERISTICS**

- N-Channel Vertical DMOS
- · Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


#### **DESCRIPTION**

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{\text{gd}}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

#### SUBCIRCUIT MODEL SCHEMATIC





www.vishay.com

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

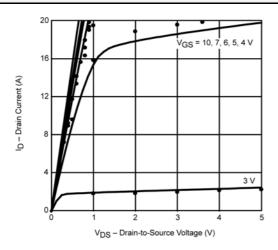
Document Number: 73003

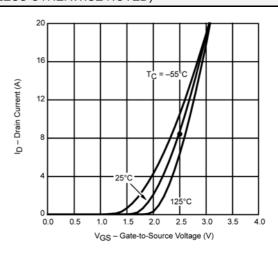
## **SPICE Device Model Si7214DN**

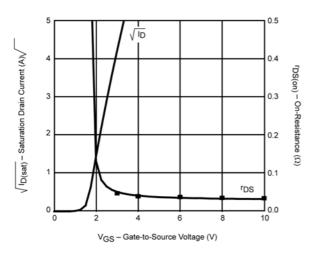
# **Vishay Siliconix**

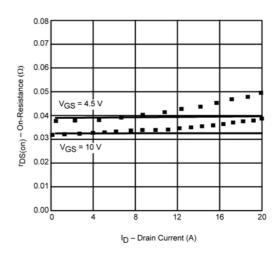


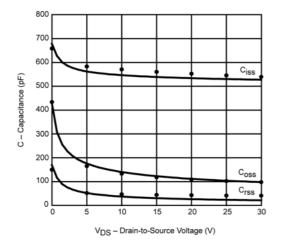
| Parameter                                     | Symbol              | Test Condition                                                                                                                   | Simulated<br>Data | Measured<br>Data | Unit    |
|-----------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|---------|
| Static                                        |                     |                                                                                                                                  |                   |                  | <u></u> |
| Gate Threshold Voltage                        | $V_{GS(th)}$        | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                                                                             | 1.1               |                  | V       |
| On-State Drain Current <sup>a</sup>           | I <sub>D(on)</sub>  | $V_{DS} \ge 5 \text{ V}, V_{GS}$ = 10 V                                                                                          | 149               |                  | Α       |
| Drain-Source On-State Resistance <sup>a</sup> | r <sub>DS(on)</sub> | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 6.4 A                                                                                   | 0.0325            | 0.0333           | Ω       |
|                                               |                     | $V_{GS}$ = 4.5 V, $I_{D}$ = 5.9 A                                                                                                | 0.0394            | 0.0392           |         |
| Forward Transconductance <sup>a</sup>         | g <sub>fs</sub>     | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 6.4 A                                                                                   | 16                | 17               | S       |
| Diode Forward Voltage <sup>a</sup>            | $V_{SD}$            | I <sub>S</sub> = 2.2 A, V <sub>GS</sub> = 0 V                                                                                    | 0.81              | 0.80             | V       |
| Dynamic <sup>b</sup>                          |                     |                                                                                                                                  |                   |                  |         |
| Total Gate Charge                             | $Q_g$               | $V_{DS}$ = 15 V, $V_{GS}$ = 10 V, $I_{D}$ = 6.4 A                                                                                | 8                 | 7.9              | nC      |
| Gate-Source Charge                            | $Q_{gs}$            |                                                                                                                                  | 1.9               | 1.9              |         |
| Gate-Drain Charge                             | $Q_{gd}$            |                                                                                                                                  | 1                 | 1                |         |
| Turn-On Delay Time                            | t <sub>d(on)</sub>  | $V_{DD} = 15 \text{ V}, \text{ R}_L = 15 \Omega$ $I_D \cong 1 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_G = 6 \Omega$ | 8                 | 7                | ns      |
| Rise Time                                     | t <sub>r</sub>      |                                                                                                                                  | 10                | 10               |         |
| Turn-Off Delay Time                           | $t_{d(off)}$        |                                                                                                                                  | 10                | 19               |         |
| Fall Time                                     | t <sub>f</sub>      |                                                                                                                                  | 6                 | 6                |         |

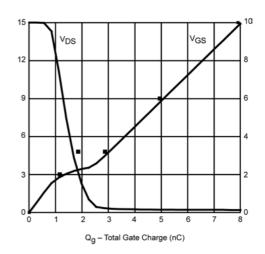

www.vishay.com Document Number: 73003


Notes a. Pulse test; pulse width  $\leq 300~\mu s,$  duty cycle  $\leq 2\%.$  b. Guaranteed by design, not subject to production testing.





## SPICE Device Model Si7214DN Vishay Siliconix


### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)














Note: Dots and squares represent measured data.

Document Number: 73003 www.vishay.com