

- **Ideal for European 433.92 MHz Transmitters**
- **Low Series Resistance**
- **Quartz Stability**
- **Rugged, Hermetic, Low-Profile TO39 Case**
- **Complies with Directive 2002/95/EC (RoHS)**

The RO2023-10 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 433.92 MHz. The RO2023-10 is designed specifically for remote-control and wireless security devices operating in Europe under ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C

RO2023-10

433.97 MHz SAW Resonator

TO39-3 Case

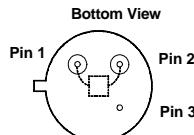
Electrical Characteristics

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency at +25 °C	f_C	2, 3, 4, 5	433.720		434.220	MHz
	Δf_C				±250	kHz
Insertion Loss	IL	2, 5, 6		3.4	4.8	dB
Quality Factor	Q_U	5, 6, 7		8,400		
	Q_L			2,800		
Temperature Stability	T_O	6, 7, 8	22	37	52	°C
	f_O			$f_c + 2.3$		kHz
	FTC			0.037		ppm/°C ²
Frequency Aging	$ f_A $	1		≤10		ppm/yr
DC Insulation Resistance between Any Two Pins		5	1.0			MΩ
RF Equivalent RLC Model	R_M	5, 7, 9		48	74	Ω
	L_M			102.2902		μH
	C_M			1.31488		fF
	C_O	5, 6, 9	1.8	2.1	2.4	pF
Transducer Static Capacitance	C_P	5, 6, 7, 9		1.8		pF
Test Fixture Shunt Inductance	L_{TEST}	2, 7		64		nH
Lid Symbolization				RFM RO2023-10		

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

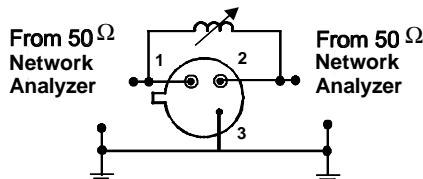
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- The center frequency, f_C , is measured at the minimum insertion loss point, IL_{MIN} , with the resonator in the 50 Ω test system (VSWR ≤ 1.2:1). The shunt inductance, L_{TEST} , is tuned for parallel resonance with C_O at f_C .
- One or more of the following United States patents apply: 4,454,488 and 4,616,197.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Unless noted otherwise, case temperature T_C = +25°C ± 2°C.
- The design, manufacturing process, and specifications of this device are subject to change without notice.
- Derived mathematically from one or more of the following directly measured parameters: f_C , IL , 3 dB bandwidth, f_C versus T_C , and C_O .
- Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_O [1 - FTC (T_O - T_C)^2]$. Typically, oscillator T_O is 20°C less than the specified resonator T_O .
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static (nonmotional) capacitance between Pin 1 and Pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either Pin 1 or Pin 2 and to the case), add approximately 0.25 pF to C_O .

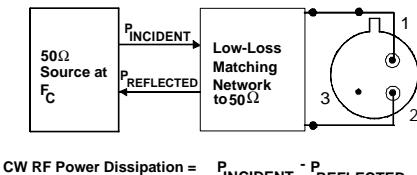

433.97 MHz

SAW Resonator

Electrical Connections

This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.

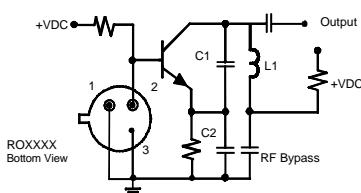

Pin	Connection
1	Terminal 1
2	Terminal 2
3	Case Ground


Typical Test Circuit

The test circuit inductor, L_{TEST} , is tuned to resonate with the static capacitance, C_O at F_C .

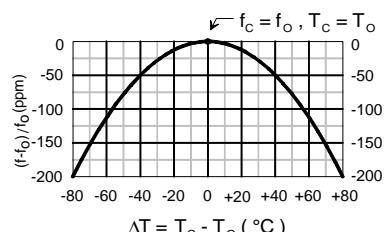
Electrical Test:

Power Test:

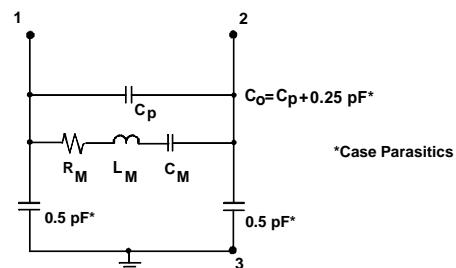


Typical Application Circuits

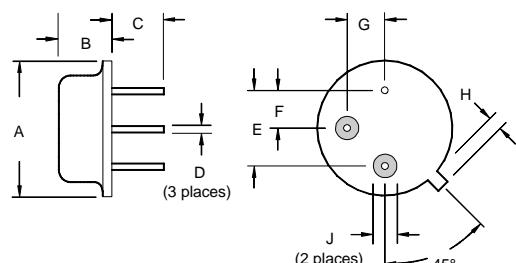
Typical Low-Power Transmitter Application:



Typical Local Oscillator Application:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.



Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Dimensions	Millimeters		Inches	
	Min	Max	Min	Max
A		9.40		0.370
B		3.18		0.125
C	2.50	3.50	0.098	0.138
D	0.46 Nominal		0.018 Nominal	
E	5.08 Nominal		0.200 Nominal	
F	2.54 Nominal		0.100 Nominal	
G	2.54 Nominal		0.100 Nominal	
H		1.02		0.040
J	1.40		0.055	