PRODUCT SPECIFICATIONS

LINEAR INTEGRATED CIRCUITS

Raytheon

Micro-Power Operational Amplifier

RC3078, RM3078A

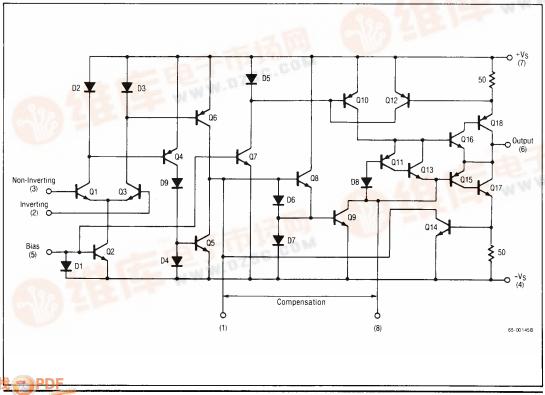
Features

- Low standby power as low as 700nW
- Wide supply voltage range ±0.75V to ±15V
- High peak output current 6.5mA minimum
- Adjustable quiescent current
- Output short circuit protection

Applications

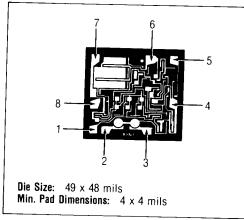
- Portable electronics
- Medical electronics
- Instrumentation
- Telemetry

Description


zsc.com

The 3078 and 3078A are high gain monolithic operational amplifiers which can deliver milli-

Schematic Diagram

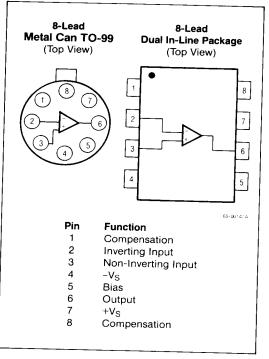

amperes of current yet only consume microwatts of standby power. Their operating points are externally adjustable and frequency compensation may be accomplished with one external capacitor. The 3078 and 3078A provide the designer with the opportunity to tailor the frequency response and improve the slew rate without sacrificing power. Operation with a single 1.5V battery is a practical reality with these devices.

The 3078A is a premium device having a supply voltage range of $V_S = \pm 0.75V$ to $V_S = \pm 15V$ and an operating temperature range of -55° C to $+125^{\circ}$ C. The 3078 has the same lower supply voltage limit but the upper limit is $+V_S = +6V$ and $-V_S = -6V$. The operating temperature range is from 0°C to $+70^{\circ}$ C

Micro-Power Operational Amplifier

Mask Pattern

Absolute Maximum Ratings


Supply Voltage
RC3078 ±7V
RM3078A ±18V
Input Voltage +Vs to -Vs
Differential Input Voltage
input Signal Current
Output Short Circuit
Duration* No Limitation
Storage Temperature
Range65° C to +150° C
Operating Temperature Range
RC3078 0° C to +70° C
RM3078A55°C to +125°C
Lead Soldering Temperature
(10 Sec)
"Short circuit may be applied to prove the second
*Short circuit may be applied to ground or to either supply.

Ordering Information

Part Number	Package	Operating Temperature Range
RC3078DE RC3078NB RC3078T	Ceramic Plastic TO-99	0° C to +70° C 0° C to +70° C 0° C to +70° C 0° C to +70° C
RM3078ADE RM3078AT RM3078AT/883B*	Ceramic TO-99 TO-99	-55°C to +125°C -55°C to +125°C -55°C to +125°C -55°C to +125°C

*MIL-STD-883, Level B Processing

Connection Information

Thermal Characteristics

	8-Lead Plastic DIP	8-Lead Ceramic DIP	8-Lead TO-99 Metal Can
Max. Junction Temp.	125° C	175° C	175° C
Max. $P_D T_A < 50^{\circ} C$	468mW	833mW	658mW
Therm. Res. θ_{JC}	_	45° C/W	50° C/W
Therm. Res. θ_{JA}	160° C/W	150° C/W	190° C/W
For T _A > 50°C Derate at	6.25mW per °C	8.33mW per °C	5.26mW per °C

RC3078, RM3078A

Electrical Characteristics (V_S = ±6V)

		RM3078A										
		$R_{SET} = 5.1 M\Omega$, $I_Q = 20 \mu A$					$R_{SET} = 1 M\Omega, I_Q = 100 \mu A$					
Descurate		T _A = +25°C			T _A = -55° C to +125° C					T _A = 0° C to +70° C		
Parameters	Test Conditions	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Units
Input Offset Voltage	$R_S \le 10 k\Omega$		0.70	3.5		4.5		1.3	4.5		5.0	mV
Input Offset Current			0.50	2.5		5.0		6.0	32		40	nA
Input Bias Current			7.0	12		50		60	170		200	nA
Large Signal Voltage Gain	$R_L \ge 10 k\Omega$	39	100		31		25	39		20		V/mV
Supply Current			20	35		100		100	130		150	μA
Power Consumption			240	300		540		1200	1560		1800	μW
Output Voltage Swing	$R_L \ge 10 k\Omega$	±5.1	±5.3		±5.0	-	±5.1	±5.3		±5.0		٧
Input Voltage Range	$R_S \le 10 k\Omega$		-5.5 to +5.8		-5 to +5			-5.5 to +5.8		-5 to +5		v
Common Mode Rejection Ratio	$R_S \leq 10 k\Omega$	80	115				80	110				dB
Output Current			12		5.0	30		12		5.0	30	mA
Power Supply Rejection Ratio Positive Supply	$R_S \le 10 k\Omega$	76	104				76	93			-	dD
NegativeSupply		76	104				76	93				dB

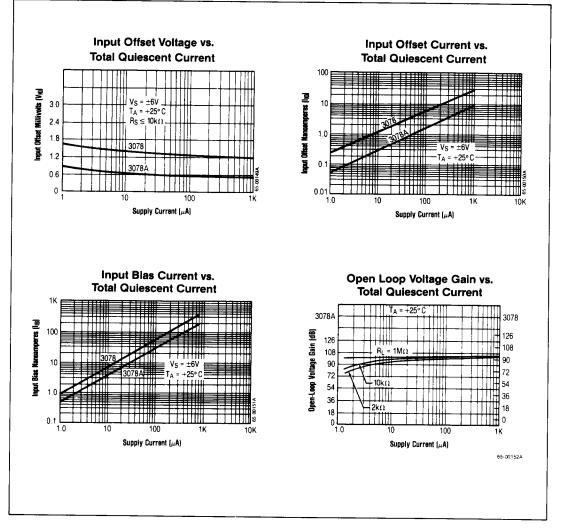
(R_{SET} = 13M Ω , I_Q = 20 μ A, V_S = ±15V)

Input Offset Voltage	$R_S \leq 10 k \Omega$		1.4	3.5		4.5				mV
Large Signal Voltage Gain	$R_L \geq 10 k\Omega$	32	100		25		1	 	1	 V/mV
Supply Current			20	35		100				μA
Power Dissipation			600	750		1350		 		μW
Output Voltage Swing	$R_L \ge 10 k\Omega$	13.7	14.1		13.5			_		 V
Common Mode Rejection Ratio	$R_S \leq 10 k\Omega$	80	106					 		 dB
Input Bias Current			7.0	14		55				 nA
Input Offset Current			0.50	2.7		5.5				 nA

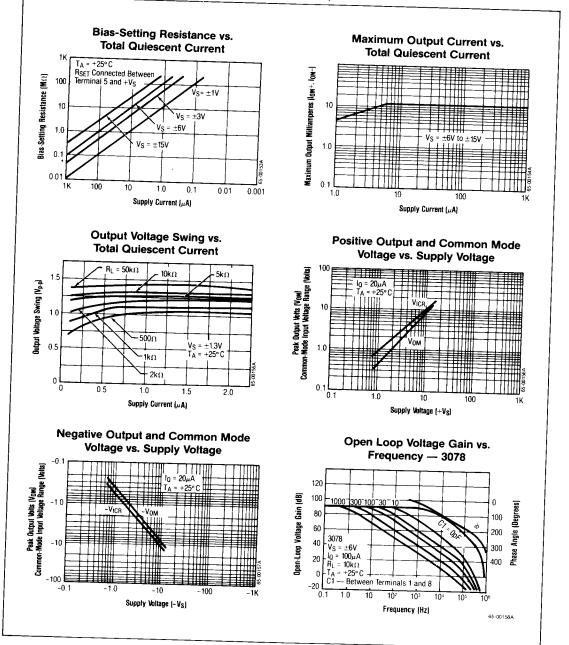
The information contained in this data sheet has been carefully compiled; however, it shall not by implication or otherwise become part of the terms and conditions of any subsequent sale. Raytheon's liability shall be determined solely by its standard terms and conditions of sale. No representation as to application or use or that the circuits are either licensed or free from patent infringement is intended or implied. Raytheon reserves the right to change the circuitry and other data at any time without notice and assumes no liability for inadvertent errors.

Micro-Power Operational Amplifier

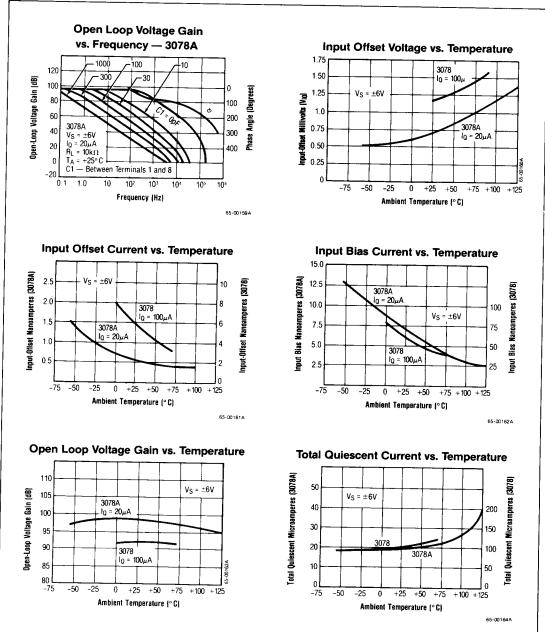
Electrical Characteristics (At T_A = +25°C)

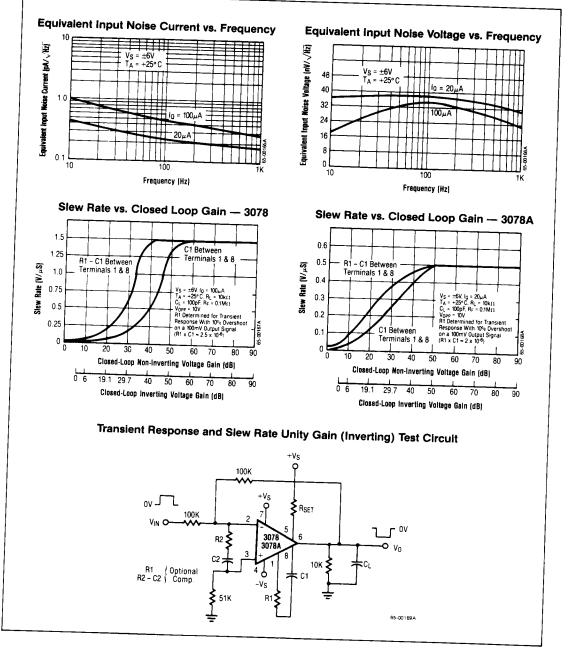

Parameters Input Offset Voltage		Typical Values								
	RM3	078A	RC	1						
	$V_{S} = \pm 1.3V,$ $R_{SET} = 2M\Omega$	$V_{S} = \pm 0.75V,$ $R_{SET} = 10M\Omega$	$V_{S} = \pm 1.3V,$ $R_{SET} = 2M\Omega$	$V_{S} = \pm 0.75V,$ $R_{SET} = 10M\Omega$	Units					
	0.7	0.9	1.3	1.5	mV					
Input Offset Current	0.3	0.054	. 1.7	0.5	nA					
Input Bias Current	3.7	0.45	9.0	1.3	nA					
Large Signal Voltage Gain	16	1.8	10	1.0	V/mV					
Supply Current	10	1.0	10	1.0						
Power Consumption	26	1.5	26	1.5	μΑ μW					
Output Voltage Swing	1.4	0.3	1.4	0.3	ν 					
Input Voltage Range	-0.8 to +1.1	-0.2 to +0.5	-0.8 to +1.1	-0.2 to +0.5	v					
Common Mode Rejection Ratio	100	90	100	90						
Output Current	12	0.5	12		dB					
Power Supply Rejection Ratio	94	86	94	0.5 86	dB					

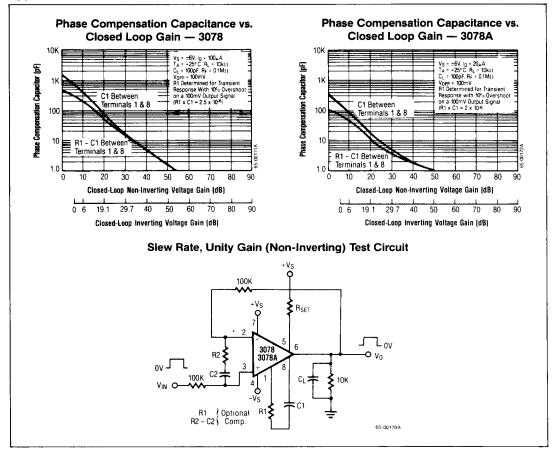
Electrical Characteristics


(Typical values intended only for design guidance at $T_A = +25^{\circ}$ C and $V_S = \pm 6V$)

Parameters		RM30	D78A	RC3078	T
	Test Conditions	$R_{SET} = 5.1 M\Omega$ $l_Q = 20 \mu A$	$R_{SET} = 1 M \Omega$ $I_0 = 100 \mu A$	$R_{SET} = 5.1 M_{\odot}$ $I_0 = 100 \mu A$	Units
Input Offset Voltage Drift	$R_S \le 10 k\Omega$	5.0	6.0	6.0	μV/°C
Input Offset Current Drift	$R_S \le 10 k\Omega$	6.3	70	70	pA/°C
Unity Gain Bandwidth	$A_V = -3dB$	0.3	2.0	2.0	kHz
Slew Rate Unity Gain		0.027	0.04	0.04	N112
Comparator	10% to 90%	0.5	1.5	1.5	V/µS
Rise Time		3.0	2.5	2.5	μS
Input Resistance (Differential Mode)		7.4	1.7	0.87	<u>μ</u> 3 ΜΩ
Open Loop Output Resistance		1.0	0.8	0.8	
Input Noise Voltage Density	$R_S = 0$	36			kΩ
Input Noise Current Density	$R_{\rm S} = 1 M \Omega$	0.4		19 1.0	nV/√Hz pA/√Hz


Typical Performance Characteristics


Typical Performance Characteristics (Continued)



Typical Performance Characteristics (Continued)

Typical Performance Characteristics (Continued)

Operating Considerations

The 3078 and 3078A can be phase-compensated with one or two external components depending upon the closed-loop gain, power consumption, and speed desired. The recommended compensation is a resistor in series with a capacitor connected from terminal 1 to terminal 8. Values of the resistor and capacitor as required for compensation are a function of closed-loop gain. These curves represent the compensation necessary at quiescent currents of 20μ A and 100μ A,

respectively, for a transient with 10% overshoot. The slew rates curves show what can be obtained with the two different compensation techniques. Higher speeds can be achieved with input compensation, but this increases noise output. Compensation can also be accomplished with a single capacitor connected from terminal 1 to terminal 8, with speed being sacrificed for simplicity. Table 1 gives an indication of slew rates that can be obtained with various compensation techniques at quiescent currents of 20μ A and 100μ A.

Single Supply Operation

The 3078 and 3078A can operate from a single supply with a minimum total supply voltage of 1.5V. Figures 2 and 3 show the 3078 and 3078A in inverting and non-inverting 20dB amplifier configurations utilizing a 1.5V type "A" cell for a supply. The total power consumption for either circuit is approximately 675 nanowatts. The output voltage swing in this configuration is $300mV_{p-p}$ with a $20k\Omega$ load.

$V_S = \pm 6V$ $R_L = 10k\Omega$ Compensation Technique	Transient Response: 10% Overshoot for an Output Voltage of 100mV, T_A = +25° C												
			ty Gain (Ir		Unity Gain (Non-Inverting)								
	1 R1	CI	R2	C2	Slew Rate	R1	C1	R2	C2	Slew			
$3078 - I_Q = 100 \mu A$	kΩ	pF	kΩ	μF	V/µS	kΩ	pF	kΩ		Rate			
Single Capacitor Resistor and Capacitor Input	0 3.5 ∞	750 350 0	∞ ∞ 0.25	0 0 0.306	0.0085 0.04 0.67	0 5.3	1500 500 0	∞ ∞ 0.311	μF 0 0	V/μS 0.0095 0.024			
3078A — I _Q = 20µA		<u> </u>			0.01		L	0.311	0.45	0.67			
Single Capacitor Resistor and Capacitor Input	0 14 ∞	300 100 0	∞ ∞ 0.644	0 0 0.156	0.0095 0.027 0.29	0 34 ∞	800 125 0	∞ ∞ 0.77	0 0 0.4	0.003 0.02 -0.4			

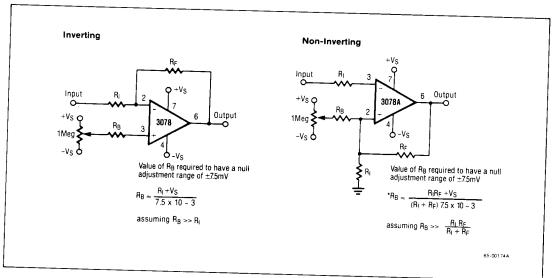


Figure 1. Offset Voltage Null Circuit

Raytheen

Micro-Power Operational Amplifier

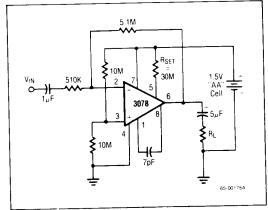
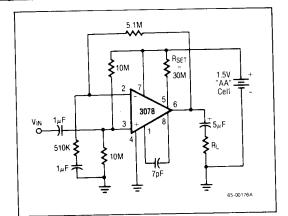
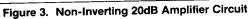




Figure 2. Inverting 20dB Amplifier Circuit

RC3078, RM3078A