

捷多邦,专业PCB打样工厂,24小时加急出货

RFD15P05, RFD15P05SM, RFP15P05

-15A, -50V, 0.150 Ohm, P-Channel Power MOSFETs

September 1998

Features

- -15A, -50V
- $r_{DS(ON)} = 0.150\Omega$
- Temperature Compensating PSPICE Model
- · Peak Current vs Pulse Width Curve
- UIS Rating Curve
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

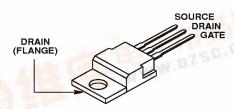
Ordering Information

PART NUMBER	PACKAGE	BRAND
RFD15P05	TO-251AA	D15P05
RFD15P05SM	TO-252AA	D15P05
RFP15P05	TO-220AB	RFP15P05

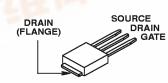
NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-252AA variant in the tape and reel, i.e., RFD15P05SM9A.

Description

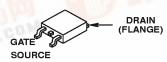
These are P-Channel power MOSFETs manufactured using the MegaFET process. This process which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits.


Formerly developmental type TA09833.

Symbol



Packaging


JEDEC TO-220AB

JEDEC TO-251AA

JEDEC TO-252AA

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

Absolute Maximum Hattings 1(; = 25 0, Onless Otherwise opecined		
-	RFD15P05, RFD15P05SM,	
	RFP15P05	UNITS
Drain Source Voltage (Note 1)V _{DSS}	-50	V
Drain Gate Voltage (R _G = 20KΩ) (Note 1)	-50	V
Gate Source Voltage	±20	V
Drain Current Continuous	-15	Α
Pulsed (Note 3)	Refer to Peak Current Curve	
Single Pulse Avalanche Rating	Refer to UIS Curve	
Power Dissipation	80	W
Derate above 25°C	0.533	W/°C
Operating and Storage Temperature	-55 to 175	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	°C
Package Body for 10s, See Techbrief 334	260	οС

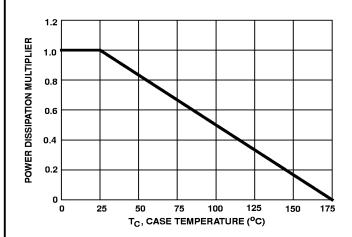
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

$\textbf{Electrical Specifications} \hspace{0.5cm} \textbf{T}_{C} = 25^{o} \text{C, Unless Otherwise Specified}$

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V (Figure 11)		-50	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = 250μA		-2.0	-	-4.0	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS}		-	-	-1	μΑ
		V _{DS} = 0.8 x Rated	BV _{DSS,} T _C = 150°C	-	-	25	μΑ
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$		-	-	±100	nA
Drain to Source On Resistance	r _{DS(ON)}	I _D = 15A, V _{GS} = -10V (Figure 9)		-	-	0.150	Ω
Turn-On Time	ton	V_{DD} = -25V, I_D ≈ 7.5A, R_G = 12.5Ω, R_L = 3.3Ω, V_{GS} = -10V (Figures 16, 17)		-	-	60	ns
Turn-On Delay Time	t _{D(ON)}			-	16	-	ns
Rise Time	t _R			-	30	-	ns
Turn-Off Delay Time	t _{D(OFF)}			-	50	-	ns
Fall Time	t _F			-	20	-	ns
Turn-Off Time	tOFF			-	-	100	ns
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 0V \text{ to } -20V$	$V_{DD} = -40V, I_D = 15A, R_L = 2.67\Omega, I_{G(REF)} = -0.65mA (Figures 18, 19)$	-	-	150	пC
Gate Charge at -10V	Q _{G(-10)}	$V_{GS} = 0V \text{ to } -10V$		-	-	75	пC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 0V \text{ to } -2V$		-	-	3.5	пC
Input Capacitance	C _{ISS}	V_{DS} = -25V, V_{GS} = 0V f = 1MHz (Figure 12)		-	1150	-	pF
Output Capacitance	C _{OSS}			-	300	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	56	-	pF
Thermal Resistance Junction to Case	R ₀ JC	TO-220AB, TO-251AA, TO-252AA		-	-	1.875	oC/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-251AA, TO-252AA		-	-	100	°C/W
		TO-220AB		-	-	62.5	oC/W


Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V_{SD}	I _{SD} = -15A	-	-	-1.5	٧
Reverse Recovery Time	t _{RR}	$I_{SD} = -15A$, $dI_{SD}/dt = -100A/\mu s$	-	-	125	ns

NOTES:

- 2. Pulse test: pulse duration \leq 300ms, duty cycle \leq 2%.
- 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).

Typical Performance Curves

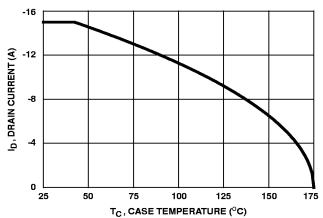


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE



FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

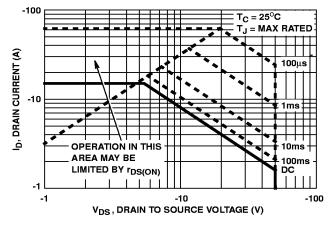


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

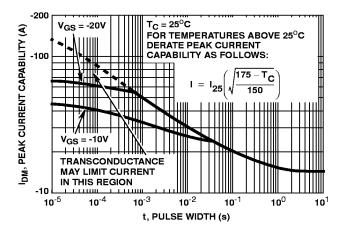
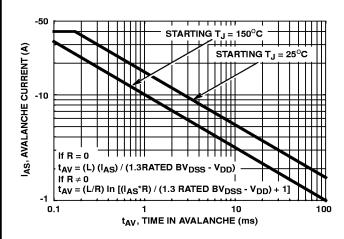



FIGURE 5. PEAK CURRENT CAPABILITY

Typical Performance Curves (Continued)

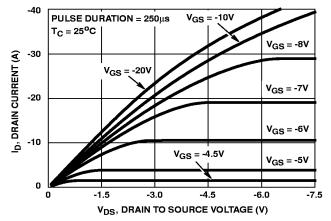
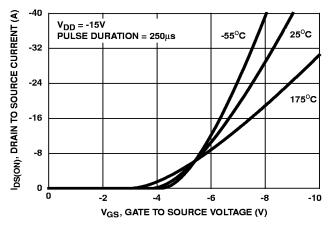



FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

FIGURE 7. SATURATION CHARACTERISTICS

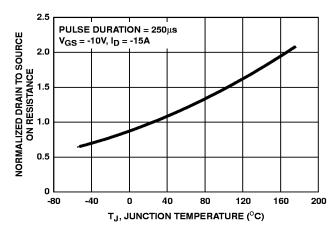
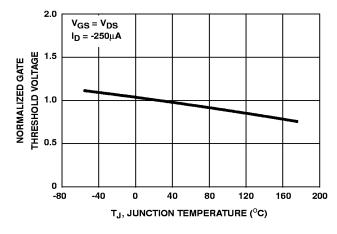



FIGURE 8. TRANSFER CHARACTERISTICS

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE VS JUNCTION TEMPERATURE

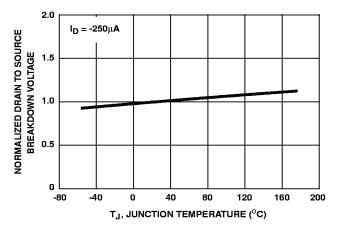
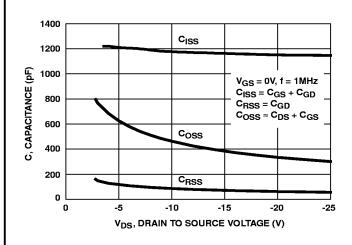



FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

Typical Performance Curves (Continued)

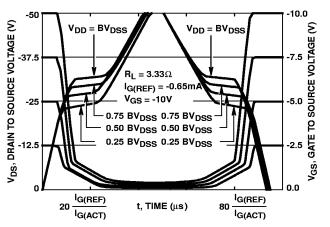
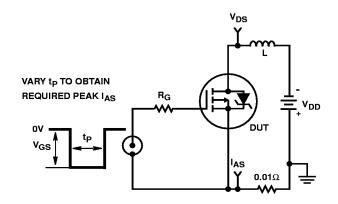
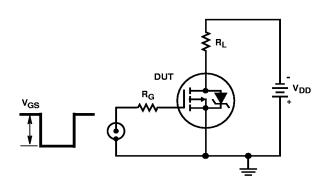



FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Harris Application Notes AN7254 and AN7260
FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT


Test Circuits and Waveforms

V_{DD} V_{DS}

FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

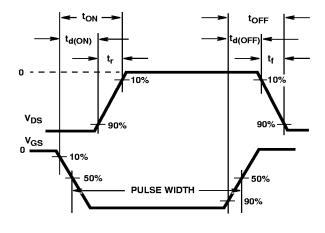


FIGURE 16. SWITCHING TIME TEST CIRCUIT

FIGURE 17. RESISTIVE SWITCHING WAVEFORMS

Test Circuits and Waveforms (Continued)

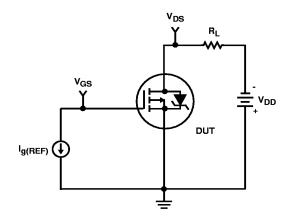


FIGURE 18. GATE CHARGE TEST CIRCUIT

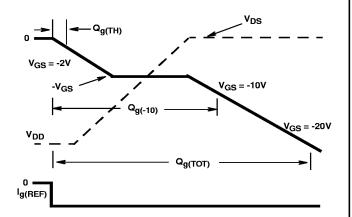
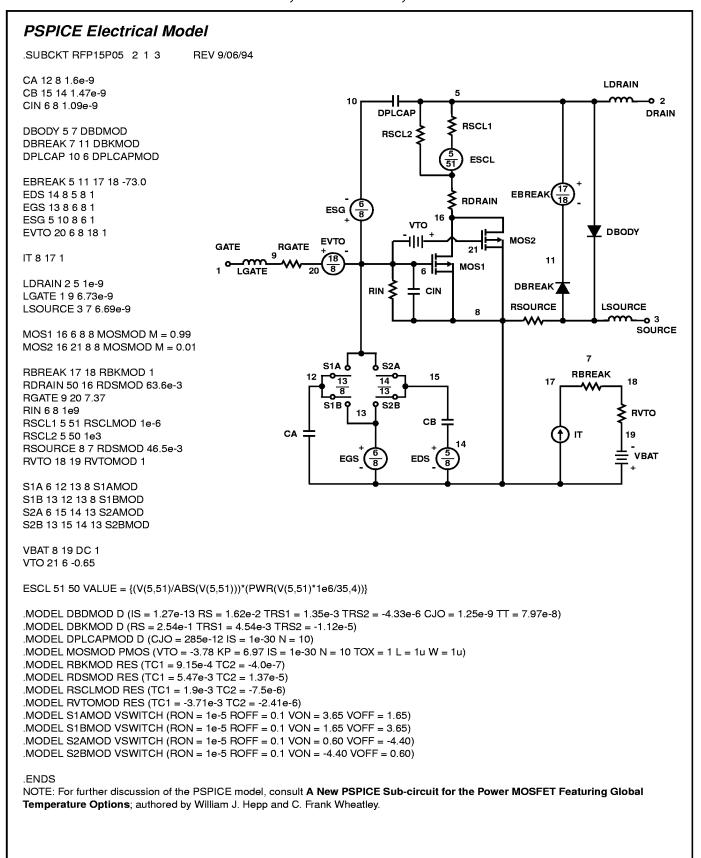



FIGURE 19. GATE CHARGE WAVEFORMS

