

1.0 SCOPE

1.1 This specification covers the detail requirements for a precision voltage reference that provides a stable +10V output and can be adjusted over a ±3% range with minimal effect on temperature stability. This circuit is processed in accordance with MIL-STD-883 and is fully compliant to paragraph 1.2.1.

It is highly recommended that this data sheet be used as a baseline for new military or aerospace source control drawings.

For typical applications and operating characteristics, consult Maxim's data books.

1.2 Part Numbers

Device	Part Number
-1	REF-01A(X)/883B
-2	REF-01(X)/883B

1.3 Package

(X)	Package	Description
J	TV	8-Pin (TO-99)
Z	JA	8-Pin Ceramic Dual-In-Line Package (CERDIP)
RC	L-20	20-Pin Ceramic Leadless Chip Carrier (LCC)

Note: See Package Information section for package drawings and dimensions.

1.4 Absolute Maximum Ratings

$(T_A = +25^{\circ}C, unless otherwise noted.)$	
Input Voltage	40V
Output Short-Circuit Duration (to GND or V _{IN})	Indefinite
Power Dissipation ($T_A = +70^{\circ}C$, $T_j = +150^{\circ}C$)	
8-Pin TO-99 (derate 6.67mW/°C above +70°C)	533mW
8-Pin CERDIP (derate 8.00mW/°C above +70°C)	
20-Pin LCC (derate 9.09mW/°C above +70°C)	
Operating Temperature Range5	5°C to +125°C
Storage Temperature Range6	55°C to +150°C
Lead Temperature (soldering, 10 sec)	

1.5 Thermal Resistance Θ_{JC} = 45°C/W for TV

 $\Theta_{JC} = 55^{\circ}C/W \text{ for JA}$ $\Theta_{JC} = 45^{\circ}C/W \text{ for LP}$ $\Theta_{JA} = 150^{\circ}C/W \text{ for TV}$ $\Theta_{JA} = 125^{\circ}C/W \text{ for JA}$

 $\Theta_{JA} = 150^{\circ}C/W$ for LP

找 PDF

Call toll free 1-

2.0 REQUIREMENTS

Electrical performance characteristics are specified in Table 1 and apply over the full ambient operating temperature range, unless otherwise specified.

TABLE 1. ELECTRICAL PERFORMANCE CHARACTERISTICS (Note 1)

CHARACTERISTICS	SYMBOL	CONDITIONS	DEVICE TYPES	GROUP A SUB- GROUPS	LIN MIN	IITS MAX	UNITS	
Quiescent Supply Current	l _{IN}	No load	-1, -2	1		1.4	mA	
		, to .02d	- 1, 52	2, 3		2.0		
Output Adjustment Range	ΔV _{TRIM}	$R_P = 10k\Omega$	-1, -2	1	-3.0	3.0	%	
		l _L ≃ 0mA	-1	1	9.970	10.030	V	
Output Voltage	V _o			2, 3	9.955	10.045		
	v o			1	9.950	10.050		
				-2 2,3 9.905 10.095	1			
Short-Circuit Current	Isc	V _○ = 0V	-1, -2	1	15	60	mA	
Sink Current	Is		-1, -2	1	-0.3		mA	
		IL = 0mA to 10mA		1		0.008	%/mA	
Load Regulation (Note 2)	LD reg			2, 3	-	0.012		
	LDieg			1		0.010		
			-2	2, 3		0.015		
Line Regulation	LN rea	\/ 12\/ to 22\/	reg V _{IN} = 13V to 33V -1 -		1		0.01	
(Note 2)	Livieg	VIN = 13V 10 33V	-1, -2	2, 3		0.015	%/V	
Load Current (Note 3)	l _L		-1, -2	1	10		mA	
Output Voltage Noise	e _{np-p}	0.1Hz to 10Hz	-1, -2	1		30	μ∨р-р	
Output Voltage Temperature Coefficient (Note 4)	TCVo		-1	400	-8.5	8.5	ppm/*C	
Coefficient (Note 4)	efficient (Note 4)		-2	1, 2, 3	-25	25		

Note 1: V_{DD} = +15V, V_{IN} = +15V, unless otherwise noted. Note 2: Line and load regulation specifications include the effect of self-heating. Note 3: Minimum 10mA load current guaranteed by load regulation test.

Note 4:
$$TCV_O = \left(\frac{1 \ V_{MAX} - V_{MIN} \ I}{10V}\right) \left(\frac{1}{180 \ C} \times 10^6\right)$$
 where -55°C ≤ T_A ≤ +125°C.

3.0 QUALITY ASSURANCE

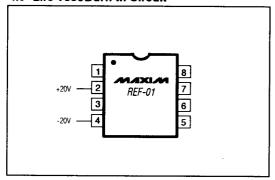
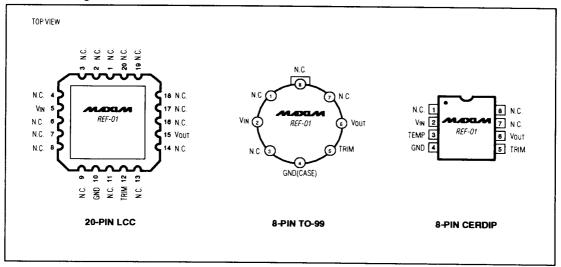
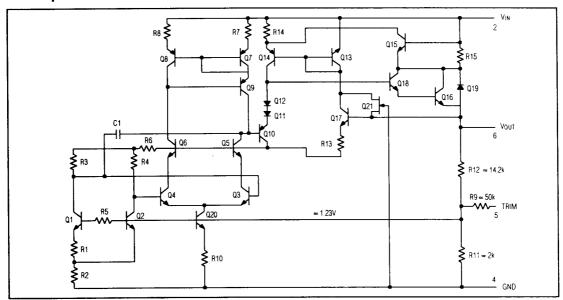

- **3.1** Sampling and inspection procedures shall be in accordance with MIL-M-38510 and, to the extent specified, with MIL-STD-883.
- 3.2 Screening shall be in accordance with Method 5004 of MIL-STD-883. Burn-in test (Method 1015):
 - (1) Test condition A, B, C, or D.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Interim and final electrical test requirements shall be as specified in Table 2.
- 3.3 Quality conformance inspection shall be in accordance with Method 5005 of MIL-STD-883 including Groups A, B, C, and D inspection.
 Group A inspection:
 - (1) Tests as specified in Table 2.
 - (2) Selected subgroups in Table 1, Method 5005 of MiL-STD-883 shall be omitted.
- 3.4 Groups C and D inspections:
 - a. End-point electrical parameters shall be specified in Table 1.
 - b. Steady-state life test (Method 1005 of MIL-STD-883):
 - (1) Test condition A, B, C, or D.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration, 1000 hours, except as permitted by Method 1005 of MIL-STD-883.

TABLE 2. ELECTRICAL TEST REQUIREMENTS


MIL-STD-883 Test Requirements	Subgroups (per Method 5005, Table 1)	
Interim Electrical Parameters (Method 5004)	1	
Final Electrical Parameters (Method 5004)	1,* 2, 3	
Group A Test Requirements (Method 5005)	1, 2, 3	
Groups C and D End-Point Electrical Parameters (Method 5005)	1	

^{*}PDA applies to Subgroup 1 only.

4.0 Life Test/Burn-In Circuit


4.1 Pin Configurations

10

+10V Precision Voltage Reference

4.2 Simplified Schematic and Pin Connections

