加急出货

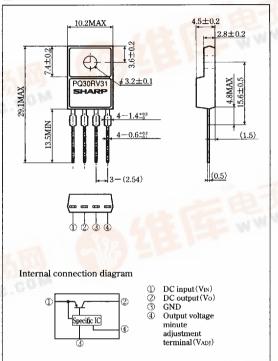
(Unit: mm)

PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21

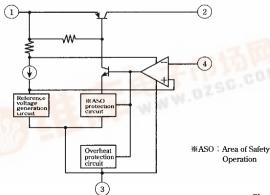
Variable Output Low Power-Loss Voltage Regulators

Features

- · Compact resin full-mold package
- Low power-loss (Dropout voltage: MAX.0.5V)
- Variable output voltage (setting range: 1.5 to 30V)
- Built-in output ON/OFF control function


Applications

- Power supply for print concentration control of electronic typewriters with display
- Series power supply for motor drives
- Series power supply for VCRs and TVs


Model Line-ups

Output voltage	1A output	2A output
Reference voltage precision:±4%	PQ30RV1	PQ30RV2
Reference voltage precision: ±2%	PQ30RV11	PQ30RV21

Outline Dimensions

Equivalent Circuit Diagram

· Please refer to the chapter "Handling Precautions".

SHARP

the basence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalons data books, etc Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device."

Absolute Maximum Ratings

(Ta=25°C)

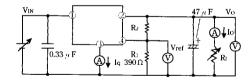
Parame	eter	Symbol	Rating	Unit	
*1 Input voltage		Vin	35	V	
*1 Output voltage adjustment voltage		Vadj	7	v	
Output current	PQ30RV1/PQ30RV11	T _o	1		
	PQ30RV2/PQ30RV21	Io —	2	— A	
Power dissipation (No hea	at sink)	PD1	1.5	w	
Power dissipation	PQ30RV1/PQ30RV11	PQ30RV1/PQ30RV11			
(With infinite heat sink)	PQ30RV2/PQ30RV21	PD2	18	w	
*2 Junction temperature		T ₁	150	°C -	
Operating temperature		Topr	-20~+80	TC TC	
Storage temperature		Tstg	-40~+150	°C	
Soldering temperature		Tsol	260 (For 10s)	, C	

^{*1} All are open except GND and applicable terminals

■ Electrical Characteristics

Unless otherwise specified, condition shall be

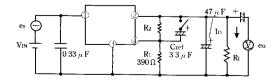
 $V_{IN}=15V$, $V_0=10V$, $I_0=0.5A$, $R_1=390\Omega$ (PQ30RV1/PQ30RV11)


V_{IN}=15V, V_O=10V, I_O=1.0A, R_I=390 Ω (PQ30RV2/PQ30RV21)

(T_a=25°C)

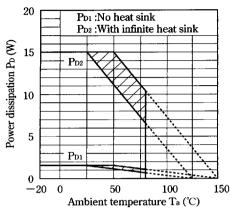
							200)
	rameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage		$V_{\rm IN}$		4.5		35	V
Output voltage	PQ30RV1/PQ30RV2	Vo	$R_2=94\Omega$ to $8.5k\Omega$		-	30	v
	PQ30RV11/PQ30RV21		$R_2=84 \Omega$ to $8.7k\Omega$	1.5			
Load regulation	PQ30RV1/PQ30RV11	RegL	Io=5mA to 1A		0.3	1.0	%
	PQ30RV2/PQ30RV21		Io=5mA to 2A		0.5	1.0	
Line regulation		RegI	V _{IN} =11 to 28V		0.5	2.5	%
Ripple rejection	RR	Cref=0	45	55			
		KK	$C_{ret} = 3.3 \mu \text{F}$ Fefer to Fig. 2	55	65		dB
Reference voltage	PQ30RV1/PQ30RV2	Vref	_	1.20	1.25	1.30	
	PQ30RV11/PQ30RV21			1.225	1.25	1.275	V
Temperature coeffic	cient of reference voltage	T _c V _{ref}	T₁=0 to 125°C		±1.0		%
Dropout voltage	PQ30RV1/PQ30RV11	V _{r-O}	**, Io=0.5A		_	0.5	v
	PQ30RV2/PQ30RV21		*3, Io=2A	_			
Quiescent current		I_q	Io=0			7	mA
Input walter b-11 b -	the control of the co	0504			<u> </u>		

^{**3} Input voltage shall be the value when output voltage is 95% in comparison with the initial value.


Fig. 1 Test Circuit

$$V_0 = V_{ref} \times \left(1 + \frac{R_2}{R_1}\right) = 125 \times \left(1 + \frac{R_2}{R_1}\right)$$

$$[R_1 = 390 \Omega, V_{ref} = 125V]$$


Fig. 2 Test Circuit of Ripple Rejection

Io=0 5A f=120Hz(sine wave) ei=0.5Vrms RR=20 log(ei/eo)

^{*2} Overheat protection may operate at T₁≥125°C.

Fig. 3 Power Dissipation vs. Ambient Temperature (PQ30RV1/PQ30RV11)

Note) Oblique line portion : Overheat protection may operate in this area.

Fig. 5 Overcurrent Protection Characteristics

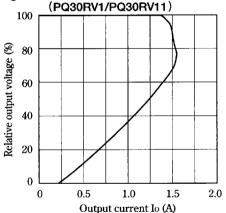


Fig. 7 Output Voltage Adjustment Characteristics

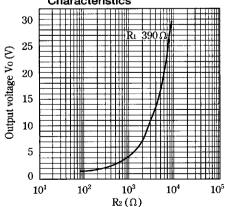
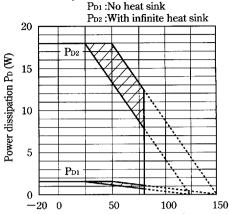



Fig. 4 Power Dissipation vs. Ambient Temperature (PQ30RV2/PQ30RV21)

Ambient temperature Ta (°C)
Note) Oblique line portion : Overheat protection may operate in this area.

Fig. 6 Overcurrent Protection Characteristics (PQ30RV2/PQ30RV21)

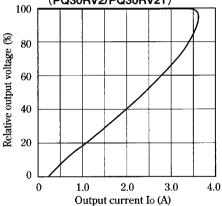
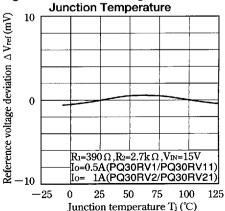



Fig. 8 Reference Voltage Deviation vs. Junction Temperature

SHARP

Fig. 9 Output Voltage vs. Input Voltage (PQ30RV1/PQ30RV11)

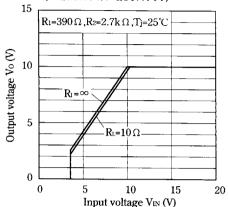


Fig.11 Dropout Voltage vs. Junction
Temperature (PQ30RV1/PQ30RV11)

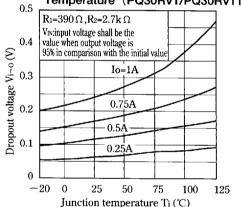


Fig.13 Quiescent Current vs. Junction Temperature

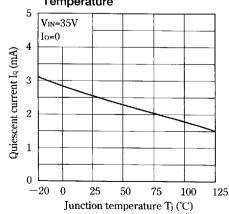


Fig.10 Output Voltage vs. Input Voltage (PQ30RV2/PQ30RV21)

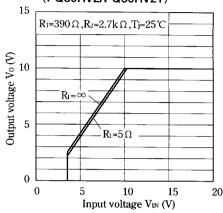


Fig.12 Dropout Voltage vs. Junction Temperature (PQ30RV2/PQ30RV21)

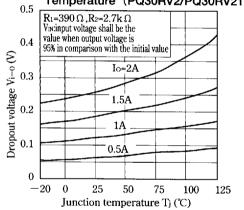
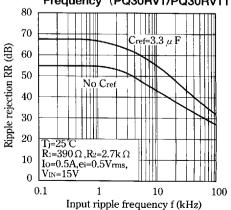



Fig.14 Ripple Rejection vs. Input Ripple Frequency (PQ30RV1/PQ30RV11)

SHARP

Fig.15 Ripple Rejection vs. Input Ripple Frequency (PQ30RV2/PQ30RV21)

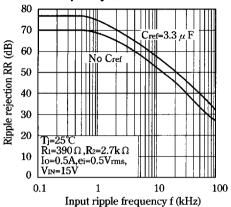


Fig.17 Ripple Rejection vs. Output Current (PQ30RV2/PQ30RV21)

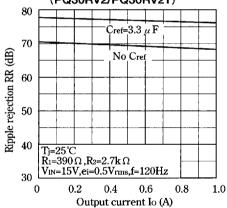


Fig.19 Output Peak Current vs. Dropout Voltage (PQ30RV2/PQ30RV21)

Fig.16 Ripple Rejection vs. Output Current (PQ30RV1/PQ30RV11)

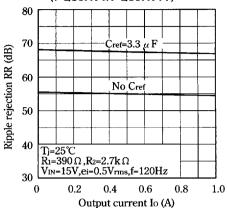


Fig.18 Output Peak Current vs. Dropout Voltage (PQ30RV1/PQ30RV11)

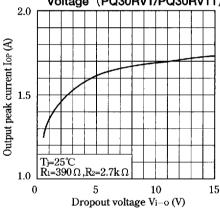
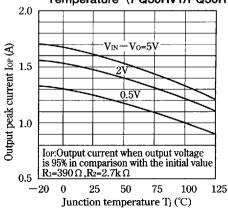



Fig.20 Output Peak Current vs. Junction Temperature (PQ30RV1/PQ30RV11)

SHARP

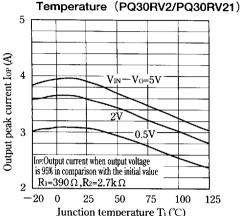
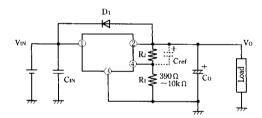



Fig.21 Output Peak Current vs. Junction
Temperature (PQ30BV2/PQ30BV21)

Standard Connection

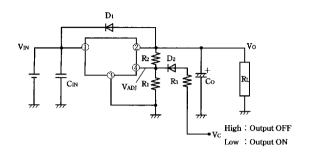
D1 : This device is necessary to protect the element from damage when reverse voltage may be applied to the regulator in case of input short-circuiting.

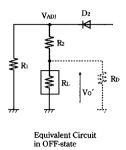
Cref : This device is necessary when it is required to enhance the ripple rejection or to delay the output start-up time(*1).

(*1)Otherwise, it is not necessary.

(Care must be taken since Cref may raise the gain, facilitating oscillation.)

(*1)The output start-up time is proportional to $C_{ref} \times R_2$.


CIN. Co: Be sure to mount the devices CIN and Co as close to the device terminal as possible so as to prevent oscillation. The standard specification of CIN and Co is 0.33 μ F and 47 μ F, respectively. However, ajust them as necessary after checking.


 R_1 , R_2 : These devices are necessary to set the output voltage. The output voltage V_0 is given by the following formula: $V_0 = V_{\rm ref} \times \ (1 + R_2/R_1)$

(V_{ref} is 1.25V TYP)

The standard value of R1 is 390 Ω . But value up 10k Ω does not cause any trouble.

ON/OFF Operation

- ON/OFF operation is available by mounting externally D2 and R3.
- When Vadj is forcibly raised above V_{ref} (1.25V TYP) by applying the external signal, the output is turned off (pass transistor
 of regulator is turned off). When the output is OFF, Vadj must be higher then V_{ref} MAX., and at the same time must be lower
 than maximum rating 7V.

In OFF-state, the load current flows to R_L from V_{ADJ} through R₂. Therefore the value of R₂ must be as high as possible.

• $V_{O'} = V_{ADJ} \times R_L / (R_L + R_2)$ occurs at the load. OFF-state equivalent circuit R_L up to $10k\Omega$ is allowed. Select as high value of R_L and R_2 as possible in this range. In some case, as output voltage is getting lower ($V_O < 1V$), impedance of load resistance rises. In such condition, it is sometime impossible to obtain the minimum value of $V_{O'}$. So add the dummy resistance indicated by R_D in the figure to the circuit parallel to the load.

■ An Example of ON/OFF Circuit Using the 1-chip Microcomputer Output Port (PQ30RV1)

 \langle Specification \rangle Output port of microcomputer VoH (max) = 0.5 V VoH (min) = 2.4 V (IoH = 0.2mA) MAX. rating of IoH = 0.5mA Output should be set as follows. $15.6\text{V RL} = 52 \Omega \ (Io = 0.3\text{A})$

From $V_0 = 1.25V$ $(1 + R_2/R_1)$ we get $V_0 = 15.6V$.

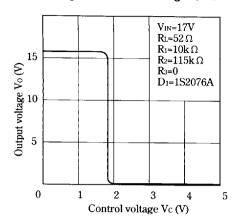
 $R_2/R_1 = 11.48$

Assuming that $V_F(max) = 0.8V$ for D_2 in case of $V_{OH}(min) = 2.4V$, we get $V_{ADJ} = V_{OH}(min) - V_F(max) = 2.4V - 0.8V$ = 1.6V. From $V_{ref}(max) = 1.3V$ we get $P_{OH}(min) = 0.8V$

If $R_1 = 10k \Omega$, we get $R_2 = 11.48 \times R_1 = 114.8k \Omega$ and I_{OH} as follows, ingnoring R_L (52 Ω):

 $I_{OH} = 1.6V \times (R_1 + R_2) / R_1 \times R_2$

= 1.6V × (10k Ω + 114.8k Ω) /10k Ω × 114.8k Ω = 0.17mA

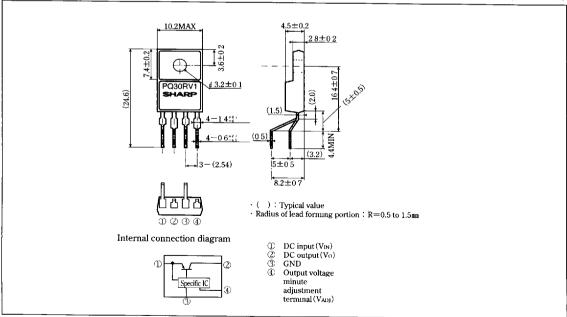

Hence, IoH < 0.2mA. Therefore VoH(min) is ensured.

Next, assuming that $V_F(min) = 0.5V$ for D_2 in case of $V_{OH}(max)$, we get:

 $I_{OH} = (5V - 0.5V) (R_1 + R_2) / R_1 \times R_2 = 0.49$ mA which is less than the rating.

Figure 1 shows the Vo - Vc characteristics when $R_1=10k\Omega$, $R_2=115k\Omega$, $R_3=0\Omega$, $V_{IN}=17V$, $R_L=52\Omega$, and $D_1=152076A$ (Hitachi).

Output Voltage vs. Control Voltage (PQ30RV1)



Model Line-ups for Lead Forming Type

Output voltage	5V output	2A output
Output voltage	DOGGDVAD	BOOGEN (OR
precision:±2.5%	PQ30RV1B	PQ30RV2B

■ Outline Dimensions (PQ30RV1B/PQ30RV2B)

(Unit: mm)

Note) The value of absolute maximum ratings and electrical characteristics is same as ones of PQ30RV1/2 series.