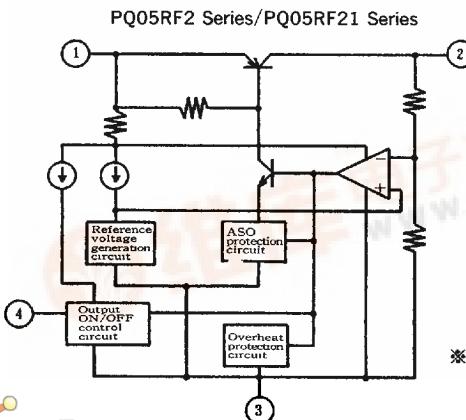


PQ05RF2/21/2V Series

2A Output, Low Power-Loss Voltage Regulators

General Description

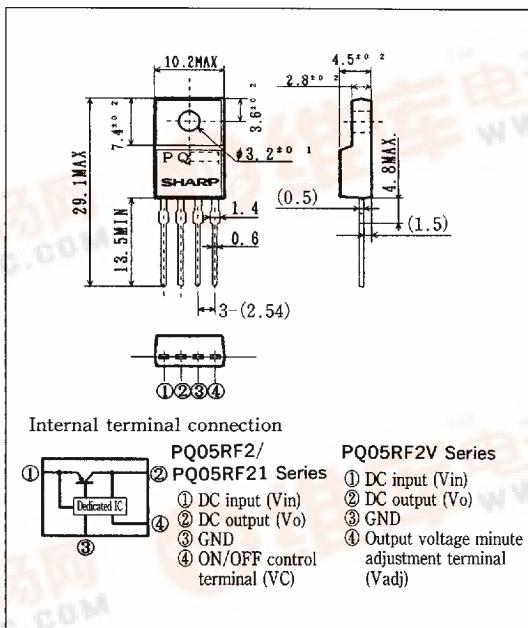
The sharp's PQ05RF2/PQ05RF21/PQ05RF2V series 4-terminal low power-loss voltage regulators provide 2A output and employ the compact full-mold package. They are multi-function regulators with overcurrent protection function and overheat protection function which are best suited for constant voltage power supply for various electronic equipment such as VCRs and electronic musical instruments.


Features

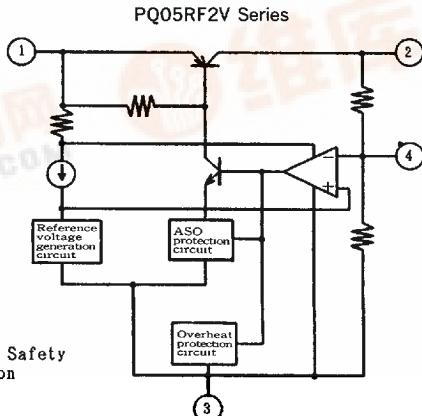
- Compact resin full-mold package.
- Low power-loss (voltage difference between input and output : MAX. 0.5V)
- Built-in ON/OFF control terminal (PQ05RF2/PQ05RF21 series)
- With output voltage minute adjusting terminal (ripple rejection is improved) (PQ05RF2V series)

Model Line-ups

	5V output	9V output	12V output	15V output
Output voltage precision: $\pm 5\%$	PQ05RF2	PQ09RF2	PQ12RF2	PQ15RF2
Output voltage precision: $\pm 2.5\%$	PQ05RF21	PQ09RF21	PQ12RF21	PQ15RF21
Minute adjustment (Output voltage adjustment range: $\pm 10\%$)	PQ05RF2V	PQ09RF2V	PQ12RF2V	PQ15RF2V


Equivalent Circuit Diagram

※ASO:Area of Safety Operation


Outline Dimensions

(Unit : mm)

Applications

Series power supply for various electronic equipment such as personal computers

■ Absolute Maximum Ratings

(Ta=25°C)

Parameter	Symbol	Rating	Unit	
* ¹ Input voltage	V _{in}	35	V	
* ¹ ON/OFF control terminal voltage	PQ05RF2series PQ05RF21Series	V _c	35	V
Output current	I _o	2	A	
Power dissipation (no heat sink)	Pd1	1.5	W	
Power dissipation (with infinite heat sink)	Pd2	18	W	
* ² Junction temperature	T _j	150	°C	
Operating temperature	T _{opr}	-20 to + 80	°C	
Storage temperature	T _{stg}	-40 to +150	°C	
* ³ Soldering temperature	T _{sol}	260	°C	

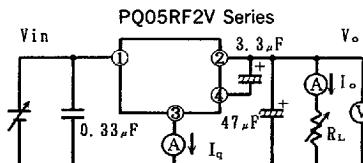
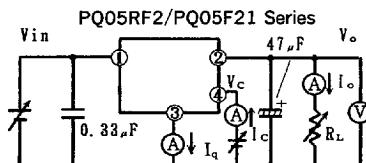
*1 All are open except GND and applicable terminals.

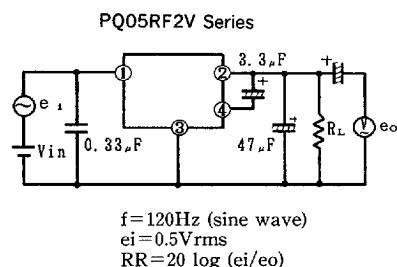
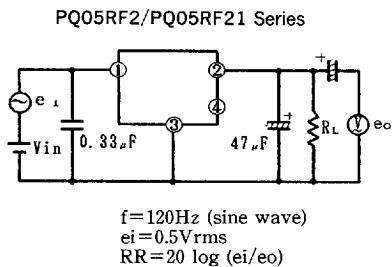
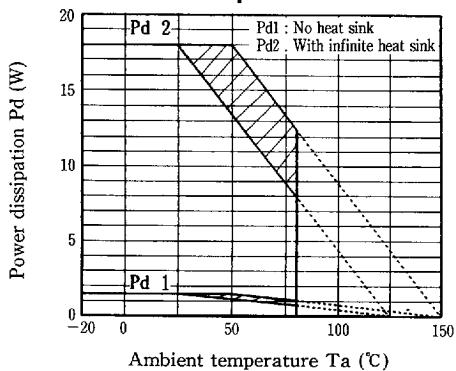
*2 Overheat protection operates at T_j>125°C

*3 For 10 s.

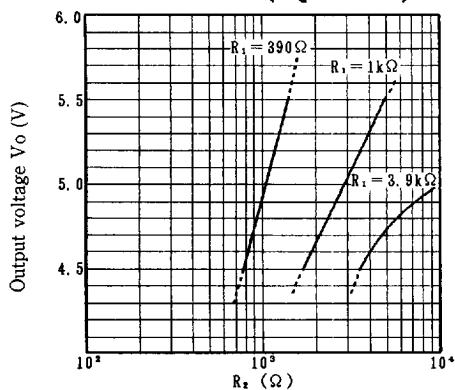
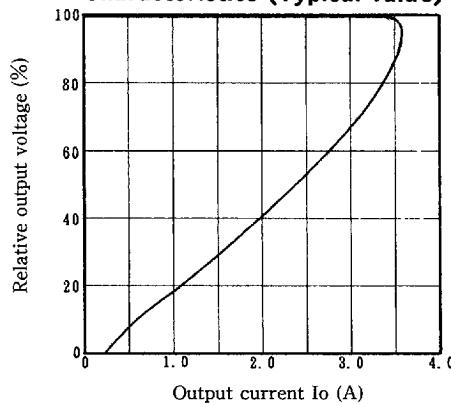
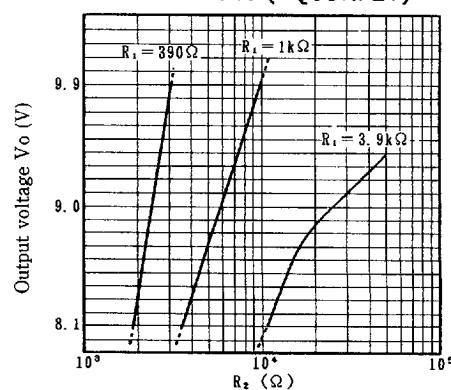
■ Electrical Characteristics

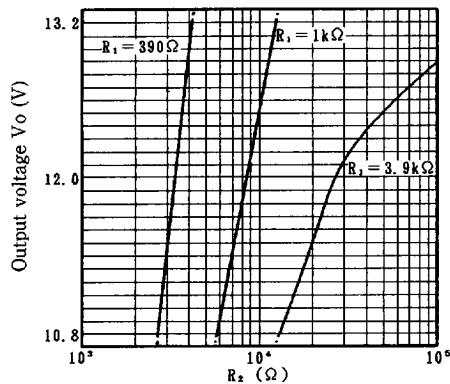
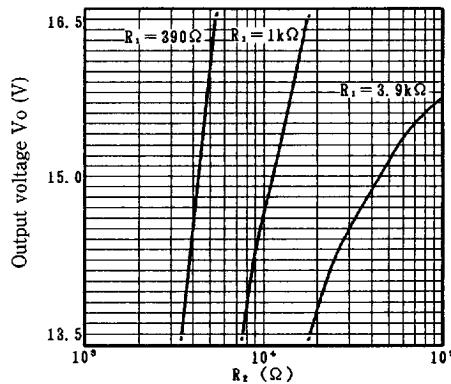
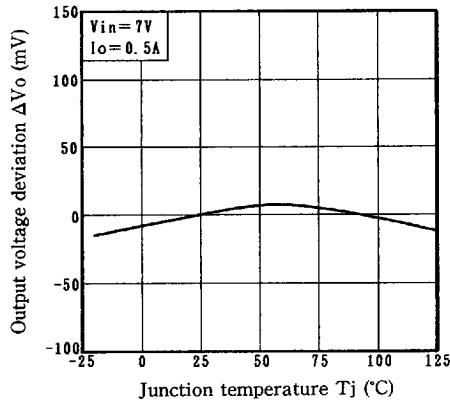
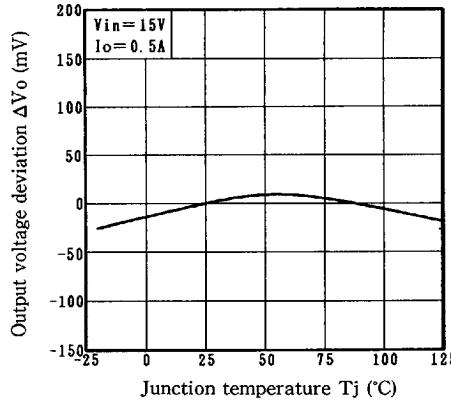
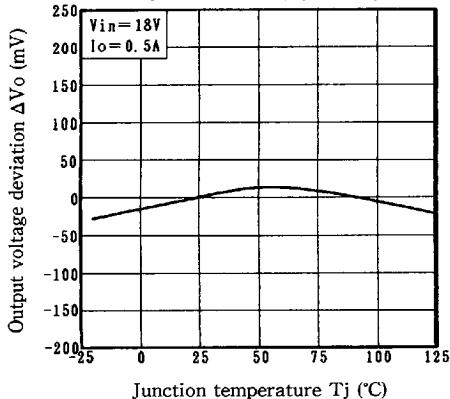
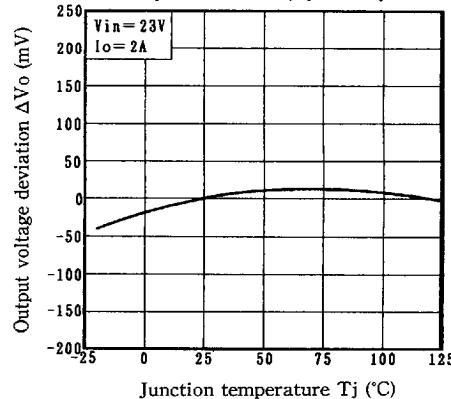
Unless otherwise specified condition shall be I_o=1A, Ta=25°C, *4)

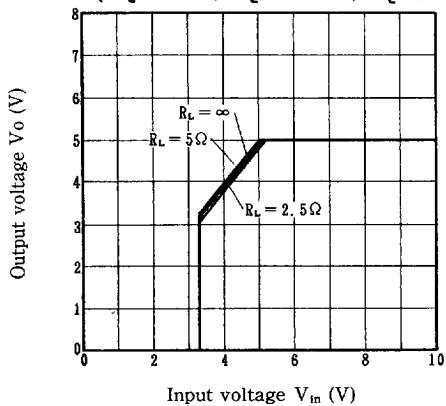
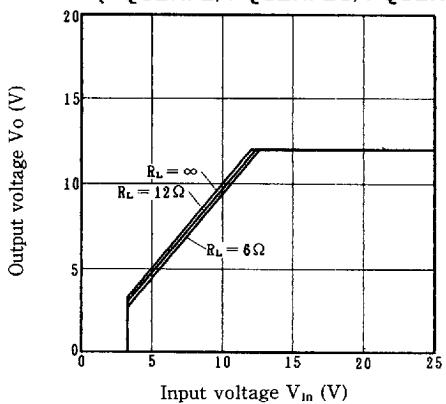
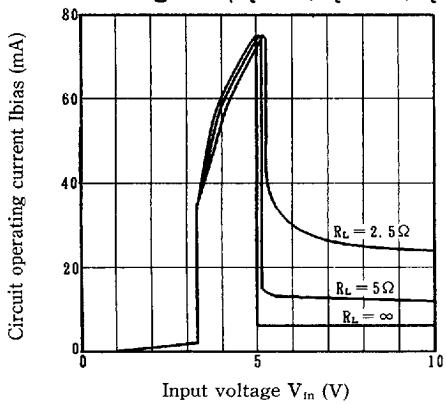
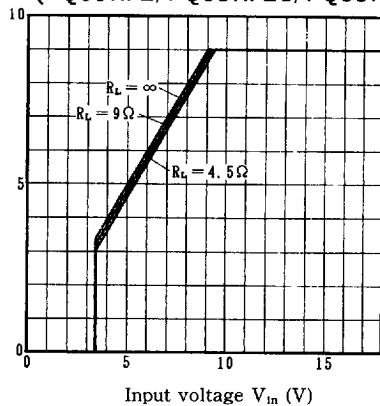
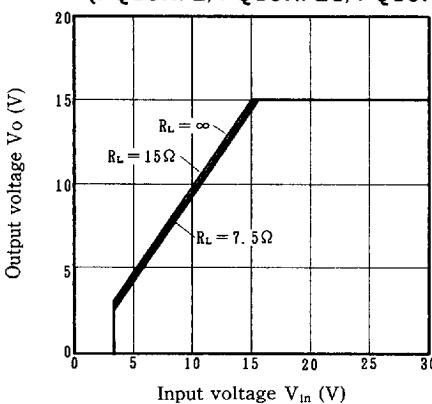
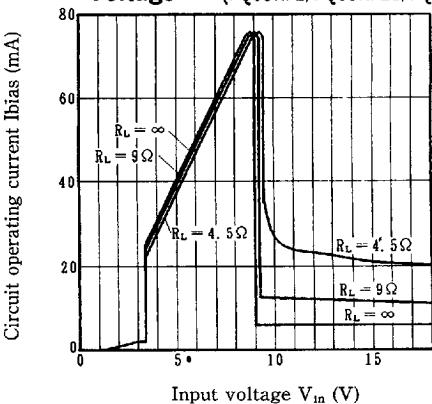


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage	PQ05RF2/PQ05RF2V	V _o	4.75	5.0	5.25	V
	PQ09RF2/PQ09RF2V		8.55	9.0	9.45	
	PQ12RF2/PQ12RF2V		11.4	12.0	12.6	
	PQ15RF2/PQ15RF2V		14.25	15.0	15.75	
	PQ05RF21		4.88	5.0	5.12	
	PQ09RF21		8.78	9.0	9.22	
	PQ12RF21		11.7	12.0	12.3	
	PQ15RF21		14.63	15.0	15.37	
Load regulation	R _{egL}	I _o =5mA to 2A	—	0.5	2.0	%
Line regulation	R _{egI}	*5	—	0.5	2.5	%
Temperature coefficient of output voltage	T _c V _o	T _j =0 to 125°C	—	±0.02	—	%/°C
Ripple rejection	PQ05RF2/PQ05RF21Series	RR	45	55	—	dB
	PQ05RF2VSeries		55	—	—	
Dropout voltage	V _{1-o}	*6, I _o =2A	—	—	0.5	V
ON-state voltage for control	V _{c(on)}	—	2.0*6	—	—	V
ON-state current for control	I _{c(on)}	V _c =2.7V	—	—	20	μA
OFF-state voltage for control	V _{c(off)}	—	—	—	0.8	V
OFF-state current for control	I _{c(off)}	V _c =0.4V	—	—	-0.4	mA
Quiescent current	I _q	I _o =0	—	—	10	mA
Output voltage minute adjustment range	PQ05RF2V	V _{o(adj)}	4.5	5.0	5.5	V
	PQ09RF2V		8.1	9.0	9.9	
	PQ12RF2V		10.8	12.0	13.2	
	PQ15RF2V		13.5	15.0	16.5	

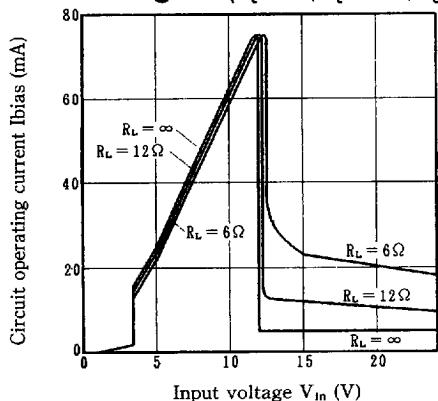
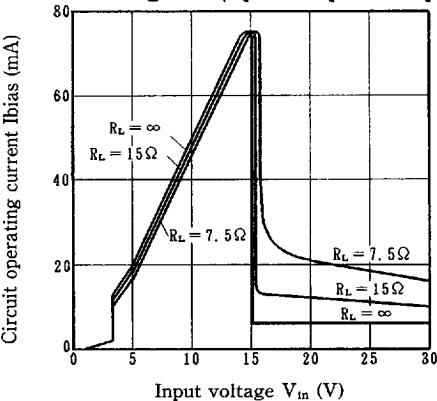
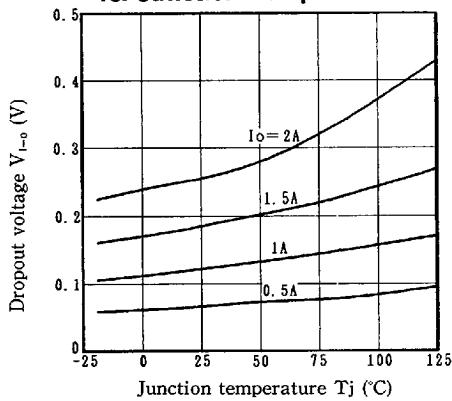
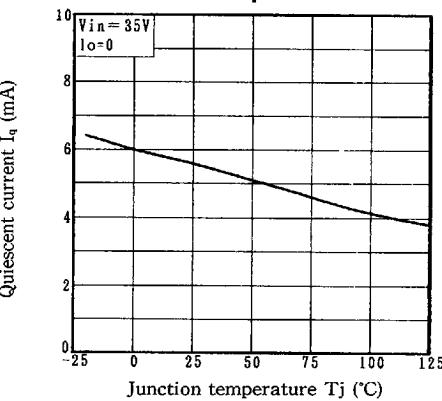
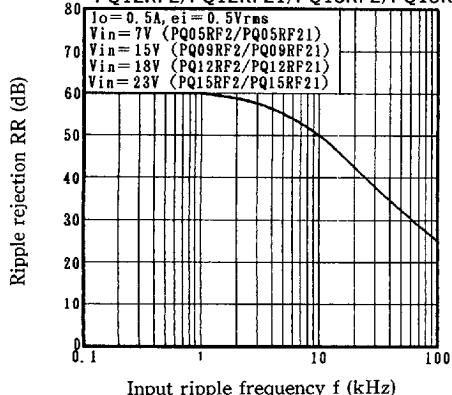
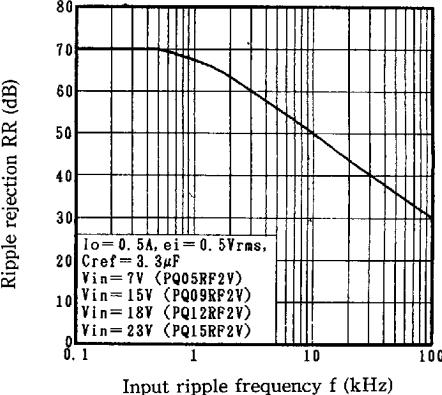



*4 PQ05RF2Series: V_{in}=7V, PQ09RF2Series: V_{in}=15V, PQ12RF2Series: V_{in}=18V, PQ15RF2Series: V_{in}=23V*5 PQ05RF2/PQ05RF21/PQ05RF2V: V_{in}=6 to 12V PQ09RF2/PQ09RF21/PQ09RF2V: V_{in}=10 to 25V
PQ12RF2/PQ12RF21/PQ12RF2V: V_{in}=13 to 29V PQ15RF2/PQ15RF21/PQ15RF2V: V_{in}=16 to 32V

*6 Input voltage shall be the value when output voltage is 95% in comparison with the initial value.




*7 In case of opening control terminal, output voltage turns on. (PQ05RF2/PQ05RF21Series)







Fig. 1 Test Circuit







Fig. 2 Test Circuit of Ripple Rejection**Fig. 3 Power Dissipation vs. Ambient Temperature**

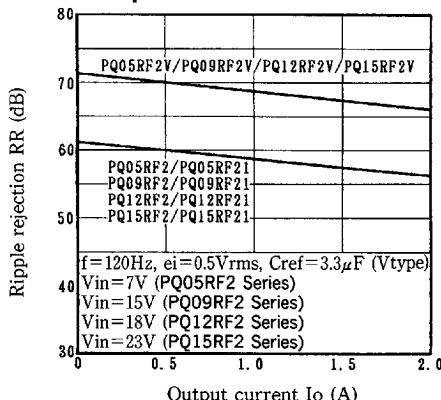

Note) Oblique line portion : Operating area of overheating protection

Fig. 5 Output Voltage Minute Adjustment Characteristics (PQ05RF2V)**Fig. 4 Overcurrent Protection Characteristics (Typical value)****Fig. 6 Output Voltage Minute Adjustment Characteristics (PQ09RF2V)**

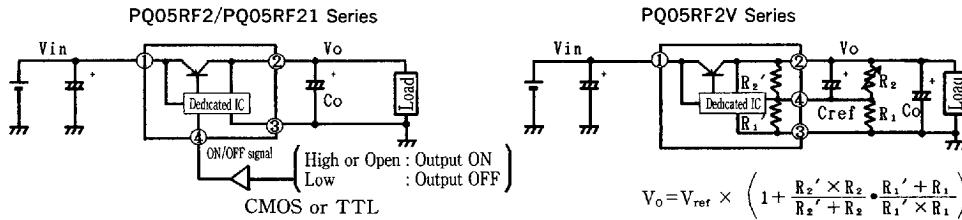

Fig. 7 Output Voltage Minute Adjustment Characteristics (PQ12RF2V)**Fig. 8 Output Voltage Minute Adjustment Characteristics (PQ15RF2V)****Fig. 9 Output Voltage Deviation vs. Junction Temperature (PQ05RF2/PQ05RF21/PQ05RF2V)****Fig. 10 Output Voltage Deviation vs. Junction Temperature (PQ09RF2/PQ09RF21/PQ09RF2V)****Fig. 11 Output Voltage Deviation vs. Junction Temperature (PQ12RF2/PQ12RF21/PQ12RF2V)****Fig. 12 Output Voltage Deviation vs. Junction Temperature (PQ15RF2/PQ15RF21/PQ15RF2V)**

Fig. 13 Output Voltage vs. Input Voltage (PQ05RF2/PQ05RF21/PQ05RF2V)**Fig. 15 Output Voltage vs. Input Voltage (PQ12RF2/PQ12RF21/PQ12RF2V)****Fig. 17 Circuit Operating Current vs. Input Voltage (PQ05RF2/PQ05RF21/PQ05RF2V)****Fig. 14 Output Voltage vs. Input Voltage (PQ09RF2/PQ09RF21/PQ09RF2V)****Fig. 16 Output Voltage vs. Input Voltage (PQ15RF2/PQ15RF21/PQ15RF2V)****Fig. 18 Circuit Operating Current vs. Input Voltage (PQ09RF2/PQ09RF21/PQ09RF2V)**

Fig. 19 Circuit Operating Current vs. Input Voltage (PQ12RF2/PQ12RF21/PQ12RF2V)**Fig. 20 Circuit Operating Current vs. Input Voltage (PQ15RF2/PQ15RF21/PQ15RF2V)****Fig. 21 Dropout Voltage vs. Junction Temperature****Fig. 22 Quiescent Current vs. Junction Temperature****Fig. 23 Ripple Rejection vs. Input Ripple Frequency**
(PQ05RF2/PQ05RF21/PQ09RF2/PQ09RF21/PQ12RF2/PQ12RF21/PQ15RF2/PQ15RF21)**Fig. 24 Ripple Rejection vs. Input Ripple Frequency**
(PQ05RF2V/PQ09RF2V/PQ12RF2V/PQ15RF2V)

Fig. 25 Ripple Rejection vs. Output Current

■ Typical Application

$$V_o = V_{ref} \times \left(1 + \frac{R_2' \times R_2}{R_2' + R_2} \cdot \frac{R_1' \times R_1}{R_1' \times R_1} \right)$$

$$V_{ref} \approx 1.26\text{V}, R_1' \approx 390\Omega$$

$$\text{PQ05RF2V : } R_2 \approx 1.16\text{k}\Omega$$

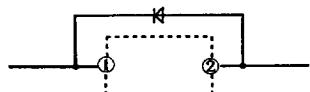
$$\text{PQ09RF2V : } R_2' \approx 2.40\text{k}\Omega$$

$$\text{PQ12RF2V : } R_2' \approx 3.32\text{k}\Omega$$

$$\text{PQ15RF2V : } R_2' \approx 4.45\text{k}\Omega$$

(Note) R_1' and R_2' are built in a dedicated IC.

■ Precautions for Use


- If voltage exceeding the voltage of DC input terminal ① is applied to the output terminal ②, the element may be damaged. Especially when the DC input terminal ① is short-circuited to GND in ordinary operating state, the output terminal voltage rises above the voltage of DC input terminal, charges accumulated in the output capacitor C_o flow to the input side, causing damage to the element. In this case connect the ordinary silicon diode as shown in the figure.
- Minute adjustment of output voltage (PQ05RF2V series)
If the external resistor is attached to the terminals ②, ③, and ④, minute adjustment of output voltage is possible.
(Refer to the example of basic circuit (PQ05RF2V series) and Fig. 5 to 8).

Note:

The specification is subject to change for improvement.

Care when handling:

Be sure to observe the requirements described in the specification and data book.

