

捷多邦,专业PCB打样工厂,24小时 加急出货

LC²MOS

8-Bit DAC with Output Amplifier

AD7224

1.1 Scope.

This specification covers the detail requirements for a monolithic CMOS 8-bit, voltage output, digital-toanalog converter with output amplifier and double-buffered interface logic. No external trims are required to achieve full specified performance for the part.

1.2 Part Number.

The complete part numbers per Tables 1 and 2 of this specification are as follows:

Device	Part Number ¹
-1	AD7224T(X)/883B
-2	AD7224U(X)/883B

NOTE

¹See paragraph 1.2.3 for package identifier.

1.2.3 Case Outline.

See Appendix 1 of General Specification ADI-M-1000: package outline:

(X)	Package	Description
Q	Q-18	18-Pin Cerdip
E	E-20A	20-Contact LCC
1.3 A	bsolute Maxim	num Ratings. $(T_A = +2)$

5°C unless otherwise noted)

V _{DD} to AGND						
VDB to AGND -0.3V +17V						
V _{DD} to DGND						
V _{SS} to AGND						
V_{SS} to DGND						
V_{DD} to V_{SS}						
AGND to DGND						
Digital Input Voltage to DGND						
V_{REF} to AGND						
Vout to AGND						
Power Dissipation						
Up to $+\hat{7}5^{\circ}$ C						
Derates above +75°C						
Operating Temperature Range						
Storage Temperature						
Lead Temperature (Soldering 10sec)						

1.5 Thermal Characteristics.

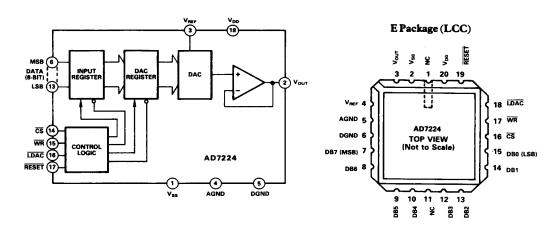
Thermal Resistance $\theta_{IC} = 35^{\circ}\text{C/W}$ for Q-18 and E-20A $\theta_{IA} = 120^{\circ}\text{C/W}$ for Q-18 and E-20A

AD7224—SPECIFICATIONS

Table 1.

Test	Symbol	Device	Design Limit T _{min} -T _{max}		Sub Group 2, 3	Sub Group 4	Test Condition ¹	Units
Resolution	RES	-1,2	8					Bits
Relative Accuracy	RA	-1 -2	1 1/2	1	1 1/2	1/2	$V_{DD} = +14V; V_{SS} = -5V; V_{REF} = +10V$	± LSB max
Total Unadjusted Error	E _T	-1	2	2	2		$V_{DD} = + 14V; V_{SS} = -5V; V_{REF} = +10V$	± LSB max
D		-2	1	2	1			
Differential Nonlinearity	DNL	-1,2	1	1	1		Guaranteed Monotonic to 8-Bits	± LSB max
Full-Scale Error	AE	-1	3/2	3/2	3/2		$V_{DD} = + 14V; V_{SS} = -5V; V_{REF} = + 10V$	± LSB max
		- 2	1	3/2	1	1		
Zero Code Error	Azce	-1	30	30	30	••	$V_{DD} = 16.5V, 11.4V \text{ and } 14V; V_{SS} = -5V;$ $V_{REF} = V_{DD} - 4$	± mV max
		– 2	20	30	20	20		
Full-Scale Temp Coefficient	dA _E /dT	-1,2	20				$V_{DD} = 14V \text{ to } 16.5V, V_{REF} = +10V$	± ppm/°C max
Voltage Output Settling Time ²	t _{SL}	-1,2	5				Positive Full-Scale Change	μs max
			7				Negative Full-Scale Change	
Voltage Output Slew Rate	t _{SR}	-1,2	2.5					V/μs min
Minimum Load Resistance	RLMIN	-1,2	2				$V_{OUT} = +10V; V_{DD} = +14V$	kΩ min
Reference Voltage Range	V _{REF}	-1,2	2 to (V _{DD} - 4)					V min to V max
Reference Input Resistance	R _I	-1,2	8	8	8		V _{DD} = 14V	kΩ min
Reference Input Capacitance	Cı	-1,2	100				Occurs When DAC Is Loaded with All 1's	pF min
Digital Input High Voltage	V _{IH}	-1,2	2.4	2.4	2.4		$V_{DD} = 11.4V; V_{REF} = V_{DD} - 4$	V min
Digital Input Low Voltage	V_{1L}	-1,2	0.8	0.8	0.8		$V_{DD} = 11.4V; V_{REF} = V_{DD} + 4$	V max
Digital Input Leakage Current	I _{IN}	-1,2	1	1	1		$V_{IN} = 0V \text{ or } V_{DD}; V_{DD} = 11.4V$	± μA max
Digital Input Capacitance	Cı	-1,2	8					pF max
Chip Select/Load DAC Pulse Width	t_{LD}	-1,2	200					ns min
Write/Reset Pulse Width	twr	-1,2	200					ns min
Chip Select/Load DAC to Write Setup Time	t _{CS}	- 1, 2	0					ns min
Chip Select/Load DAC to Write HoldTime	^t CH	-1,2	0					ns min
Data Valid to Write Setup Time	t _{DS}	-1,2	100					ns min
Data Valid to Write Hold Time	t _{DH}	-1,2	10					ns min
Power Supply Voltage Range	V_{DD}	-1,2	11.4				For Specified Performance	+ V min
			16.5					+ V max
	Vs	-1,2	4.5				For Specified Performance	– V min
			5.5]			·	- V max
Power Supply Current	I _{DD}	-1,2	6	4	6		Output Unloaded: $V_{IN} = V_{IL}$ or V_{IH} $V_{DD} = 16.5V$; $V_{SS} = -5.5V$; $V_{REF} = 12.5V$	mA max
	Iss	-1,2	5	3	5			

NOTE: DUAL SUPPLY OPERATION $^{1}V_{DD} = +11.4V$ to 16.5V; $V_{SS} = -5V \pm 10\%$; AGND = DGND = 0V; $V_{REF} = +2V$ to $(V_{DD} - 4V)$ unless otherwise stated. $^{2}V_{REF} = +10V$; settling time to \pm 1/2LSB.


Table 2.

Test	Symbol	Device	Design Limit T _{min} -T _{max}	Sub Group 1	Sub Group 2,3	Sub Group 4	Test Condition ¹	Units
Resolution	RES	-1,2	8					Bits
Total Unadjusted Error	ET	-1,2	2	2	2		V _{DD} = +14V	± LSB max
Differential Nonlinearity	DNL	-1,2	1	1	1		V _{DD} = + 14V; Guaranteed Monotonic to 8-Bits	± LSB max
Voltage Output Settling Time ²	t _{SL}	-1,2	5				Positive Full-Scale Change	μs max
			20				Negative Full-Scale Change	
Voltage Output Slew Rate	t _{SR}	-1,2	2					V/μs min
Minimum Load Resistance	RLMIN	-1,2	2	2	2		$V_{OUT} = +10V; V_{DD} = +15V$	kΩ min
Reference Input Resistance	Rt	-1,2	8				V _{DD} = 14.25V	kΩ min
Reference Input Capacitance	Cı	-1,2	100				Occurs When DAC Is Loaded with All 1's	pF max
Digital Input High Voltage	VIH	-1,2	2.4	2.4	2.4		$V_{DD} = 14.25V$	V min
Digital Input Low Voltage	VIL	-1,2	0.8	0.8	0.8		$V_{DD} = 14.25V$	V max
Digital Input Leakage Current	I _{IN}	-1,2	1				$V_{IN} = 0V \text{ or } V_{DD}; V_{DD} = 14.25V$	± μA max
Digital Input Capacitance	Cı	-1,2	8					pF max
Chip Select/Load DAC Pulse Width	t _{LD}	-1,2	200		1			ns min
Write/Reset Pulse Width	twr.	-1,2	200					ns min
Chip Select/Load DAC to Write Setup Time	tcs	-1,2	0					ns min
Chip Select/Load DAC to Write HoldTime	t _{СН}	-1,2	0					ns min
Data Valid to Write Setup Time	t _{DS}	-1,2	100					ns min
Data Valid to Write Hold Time	t _{DH}	-1,2	10					ns min
Power Supply Voltage Range	V_{DD}	-1,2	14.25				For Specified Performance	+ V min
			15.75					+ V max
Power Supply Current	I _{DD}	-1,2	6				Outputs Unloaded; $V_{IN} = V_{IL}$ or V_{IH} $V_{DD} = 15.75V$	mA max

NOTE: SINGLE SUPPLY OPERATION $^1V_{DD}=+15V\pm5\%;V_{55}=AGND=DGND=0V;V_{REF}=+10V$ unless otherwise stated. $^2Settling time to \pm 1/2LSB$.

AD7224

3.2.1 Functional Block Diagram and Terminal Assignments.

3.2.4 Microcircuit Technology Group.

This microcircuit is covered by technology group (80).

4.2.1 Life Test/Burn-In Circuit.

Steady state life test is per MIL-STD-883 Method 1005. Burn-in is per MIL-STD-883 Method 1015 test condition (B).

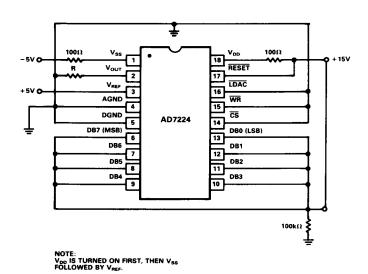


Table 3. AD7224 Truth Table

RESE	T LDAC	WR	CS	Function
Н	L	L	L	Both Registers are Transparent
H	x	Н	x	Both Registers are Latched
Н	н	X	H	Both Registers are Latched
Н	н	L	L	Input Register Transparent
Н	н	-	L	Input Register Latched
Н	L	L	Н	DAC Register Transparent
н	L		H	DAC Register Latched
L	x	X	x	Both Registers Loaded With All Zeros
-	Н	Н	Н	Both Register Latched With All Zeros and Output Remains at Zero
<u>.</u>	L	L	L 	Both Registers are Transparent and Output Follows Input Data

H = High State, L = Low State, X = Don't Care

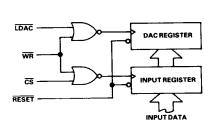
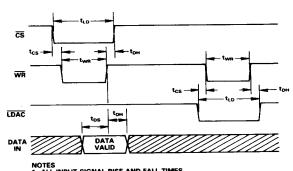



Figure 1. Input Control Logic

NOTES 1. ALL IMPUT SIGNAL RISE AND FALL TIMES MEASURED FROM 10% TO 90% of V_{DD} , $t_{\rm r}=t_{\rm r}=20$ ns over $V_{\rm DD}$ range 2. TIMING MEASUREMENT REFERENCE LEVEL IS $\frac{V_{\rm BMH}+V_{\rm BML}}{V_{\rm BMH}+V_{\rm BML}}$

Figure 2. Write Cycle Timing Diagram