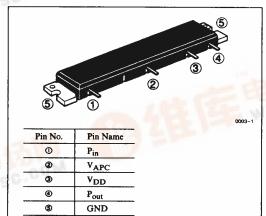
PF0040 Series

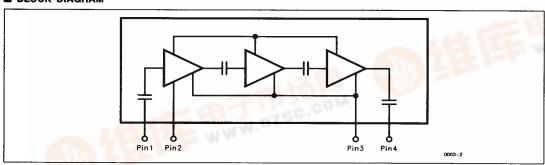
MOS FET Power Amplifier

■ FEATURES

- High Stability: Load VSWR ≈ ∞
- Low Power Control Current: 400 μA
- Thin Package: 5 mmt


■ ORDERING INFORMATION

Part No.	Operating Frequency	Application		
PF0040	824 to 849 MHz	AMPS		
PF0042	872 to 905 MHz	E-TACS		


捷多邦,专业PCB打样工厂,24小时

加急出货

PIN OUT

■ BLOCK DIAGRAM

2

HITACHI

\blacksquare ABSOLUTE MAXIMUM RATINGS (T_A = 25°C)

Parameter	Symbol	Value	Unit	
Supply Voltage	V _{DD}	17	v	
Supply Current	I_{DD}	3	A	
APC Voltage	V _{APC}	±8	V mW	
Input Power	P _{in}	20		
Operating Case Temperature	T _{C(op)}	- 30 to + 110	*c	
Storage Temperature	T _{stg}	- 40 to + 110	°C	

■ ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions	
Drain Cutoff Current	I _{DS}		-	500	μΑ	$V_{DD} = 17V, V_{APC} = 0V$	
Total Efficiency	ηΤ	35	40	_	%	$P_{in} = 2 \text{ mW},$	
2nd Harmonic Distortion	2nd H.D.	_	- 50	- 30	dB	$V_{DD} = 12.5V,$ $P_{out} = 6W \text{ (at APC controlled)}$ $Z_{in} = Z_{out} = 50\Omega$	
3rd Harmonic Distortion	3rd H.D.		– 50	- 30	dB		
Input VSWR	VSWR (in)	-	1.5	3	_		
Output VSWR	VSWR (out)	_	1.5	_			
Stability		No Parasitic Oscillation		_	$\begin{array}{ll} P_{in} = 2 \text{ mW, V}_{DD} = 12.5\text{V,} \\ P_{out} = 6\text{W (at APC controlled),} \\ Z_{in} = Z_{out} = 50\Omega, \\ \text{Output VSWR} \approx \infty \text{ All Phases,} \\ t = 20 \text{ sec} \end{array}$		

■ PF0040 STANDARD DATA

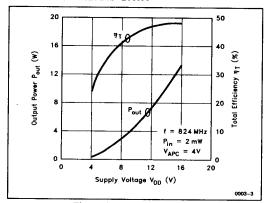


Figure 1. Pout, η_T vs. V_{DD}

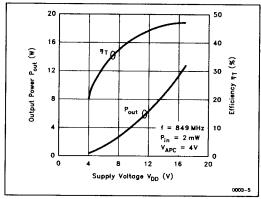


Figure 3. Pout, η_T vs. V_{DD}

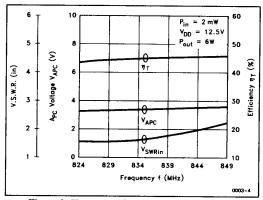


Figure 2. VAPC, η_T , VSWR (in) vs. Frequency

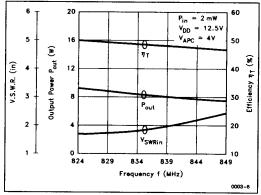


Figure 4. Pout, η_T , VSWR (in) vs. Frequency

■ PF0040 STANDARD DATA (cont.)

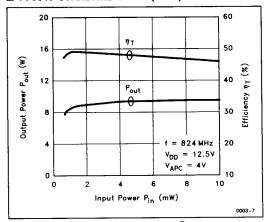


Figure 5. Pout, η_T vs. Pin

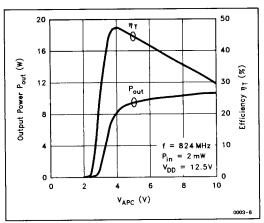


Figure 6. Pout, η_T vs. V_{APC}

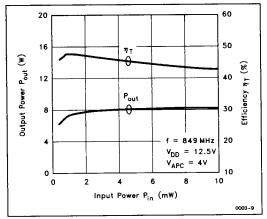


Figure 7. Pout, η_T vs. Pin



Figure 8. Pout, η_T vs. VAPC

■ PF0040 STANDARD DATA (cont.)

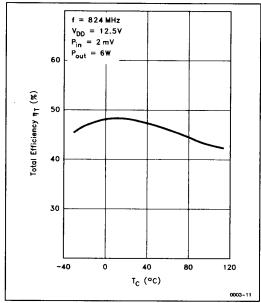


Figure 9. η_T vs. T_C

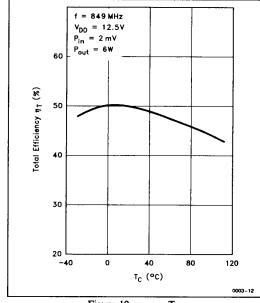


Figure 10. η_T vs. T_C

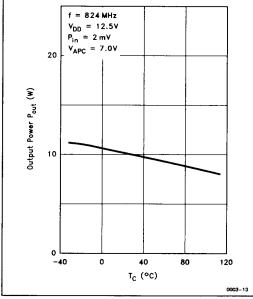


Figure 11. Pout vs. T_C

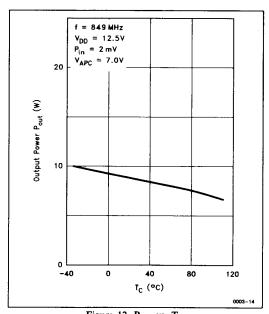


Figure 12. Pout vs. T_C

■ PF0042 STANDARD DATA

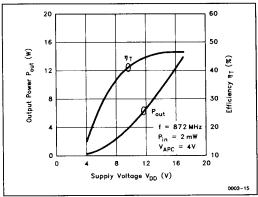


Figure 13. Pout, η_T vs. V_{DD}

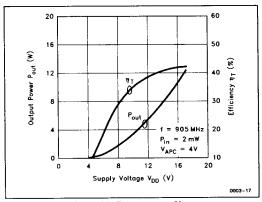


Figure 15. Pout, η_T vs. V_{DD}

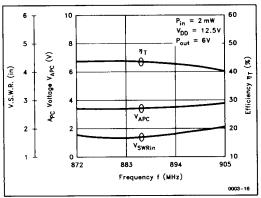


Figure 14. VAPC, η_T , VSWR (in) vs. Frequency

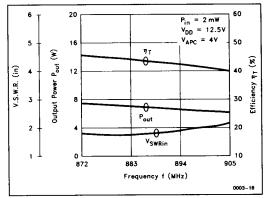


Figure 16. Pout, η_T , VSWR (in) vs. Frequency

■ PF0042 STANDARD DATA (cont.)

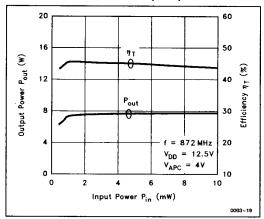


Figure 17. Pout, η_T vs. Pin

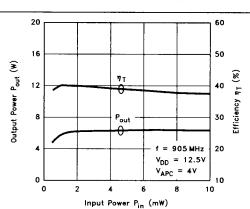


Figure 19. Pout, η_T vs. Pin

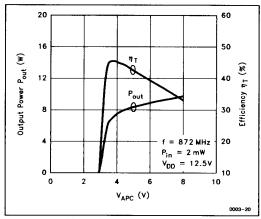


Figure 18. Pout, η_T vs. V_{APC}

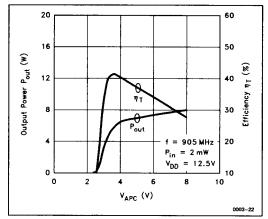


Figure 20. Pout, η_T vs. V_{APC}

0003-21

■ PF0042 STANDARD DATA (cont.)

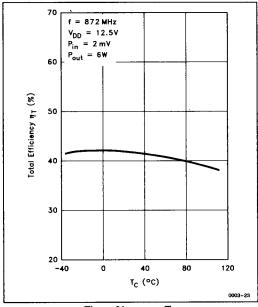


Figure 21. η_T vs. T_C

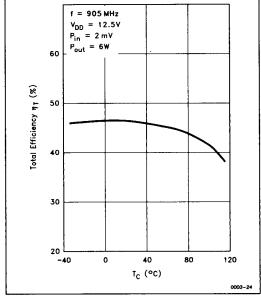


Figure 22. η_T vs. T_C

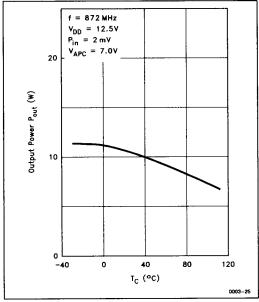
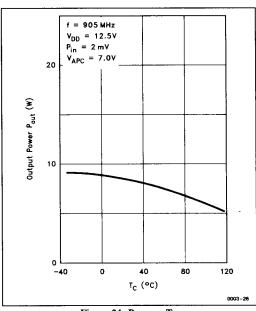
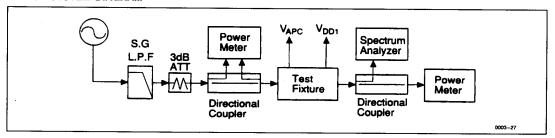
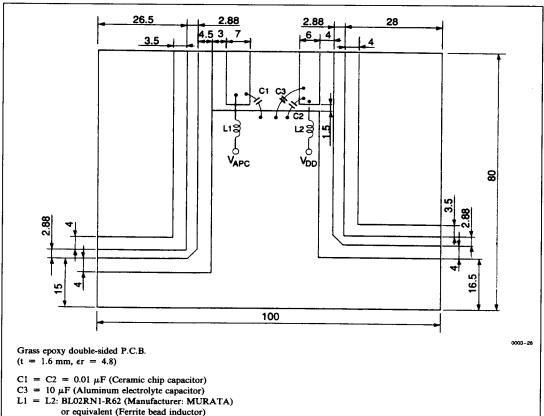


Figure 23. Pout vs. T_C


Figure 24. Pout vs. T_C

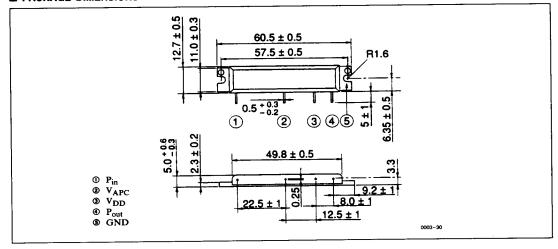
TEST SYSTEM DIAGRAM

■ TEST FIXTURE PATTERN

Unit: mm

HITACHI

■ MECHANICAL CHARACTERISTICS


Item	Conditions	Spec. 4-6 kg/cm	
Torque for screw up the heatsink flange	M3 Screw-Bolts		
Warp size of the heatsink flange: S	mannan s	S = 0 + 0.3 / -0 mm	

NOTES FOR USE

- Unevenness and distortion at the surface of the heatsink attached module should be less than 0.05 mm.
- There should not be any dust between module and heatsink.
- Module should be separated from PCB less than 1.5 mm.
- Soldering temperature and soldering time should be less than 230°C, 10 sec. (Soldering position spaced from the root point of the lead frame: 2mm)
- Recommendation of thermal joint compounds is TYPE G746 (Manufacturer: Shin-Etu Chemical, Co., Ltd.) or equivalent.
- To protect devices from electrostatic damage, soldering iron, measuring-equipment and human body, etc., they should be grounded.

PACKAGE DIMENSIONS

Unit: mm

