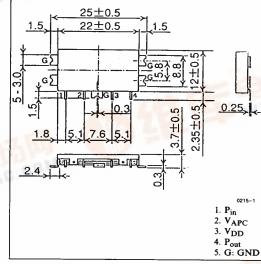
PF0027 **@** 间PF0027供应商

捷多邦,专业PCB打样工厂,24小品reliminary

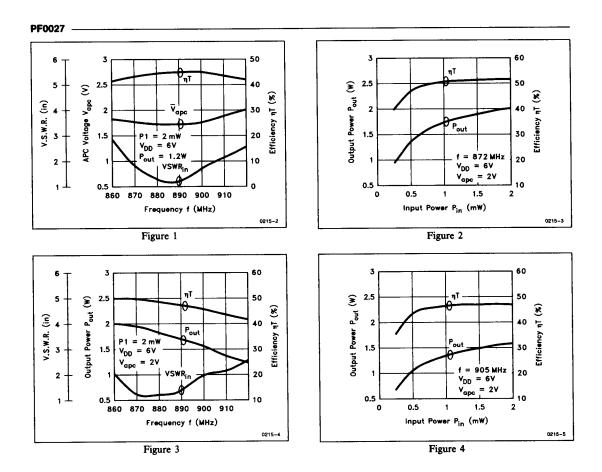
加急出货


MOS FET Power Amplifier Module for E-TACS Handy Phone

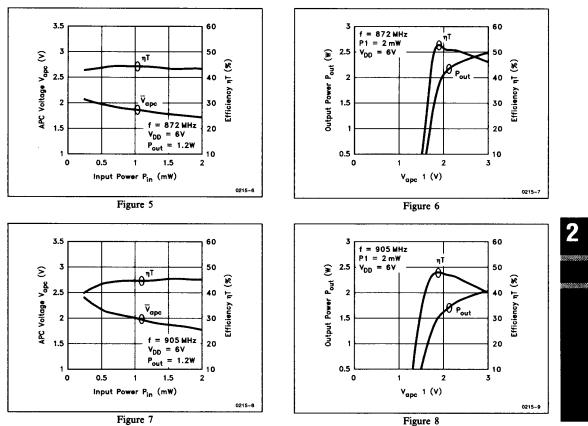
FEATURES

- Surface Mounted Small Package

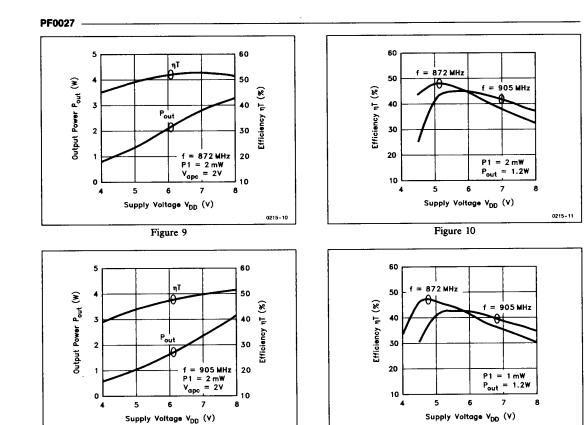
■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C)


Parameter	Symbol	Value	Unit V	
Supply Voltage	V _{DD}	12		
Supply Current	I _{DD}	2	A	
APC Voltage	VAPC	±8	v	
Input Power	Pin	20	mW	
Operating Case Temperature	T _C (op)	- 30 ~ + 100	°C	
Storage T _{stg}		$-30 \sim +100$	°C	

ELECTRICAL CHARACTERISTICS (T_C = 25°C)


Parameter	Symbol	Min	Мах	Unit	Test Conditions	
Drain Cutoff Current	I _{DS}	_	100	μΑ	$V_{DD} = 12V, V_{APC} = 0V, Rg = R_I = 50\Omega$	
Total Efficiency	ηΤ	43		%	$f = \frac{872 \text{ to } 905 \text{ MHz}}{2 \text{ mW}}$	
2nd Harmonic Distortion	2nd H.D.	_	- 30	dB		
3rd Harmonic Distortion	3rd H.D.	-	- 30	dB	$V_{\rm DD}^{\rm m} = 6V, Rg = R_{\rm L} = 50\Omega,$	
Input VSWR	VSWR(in)	82.7	3	0.1	$P_{out} = 1.2W$ (at APC Controlled)	
Output Power	P _{out} (1)	1.6	-	w	$V_{DD} = 6V, f = 872 \text{ to } 905 \text{ MHz}, P_{in} = 2 \text{ mW},$ $V_{APC} = 4V, Rg = R_L = 50\Omega$	
Isolation	P _{out} (2)	_	- 35	dBm	$V_{DD} = 6V, f = 872 \text{ to } 905 \text{ MHz}, P_{in} = 2 \text{ mW},$ $V_{APC} = 0.5V, Rg = R_L = 50\Omega$	
Load VSWR Tolerance	_	No Degradation		_	$V_{DD} \le 8V$, f = 872 to 905 MHz, $P_{in} = 2 \text{ mW}$, $Rg = 50\Omega$, $V_{APC} \le 4V$, t = 20 sec, Load VSWR $\le 20 \text{ All Phase Angles}$	
Stability	_	No Parasitic Oscillation			f = 872 to 905 MHz, $P_{in} = 2 \text{ mW}$, $V_{DD} = 5.2 \sim 7.5 \text{V}$, $P_{out} \leq 1.6 \text{W}$, $Zg = 50\Omega$, Load VSWR = 3 All Phases Angles	

HITACHI

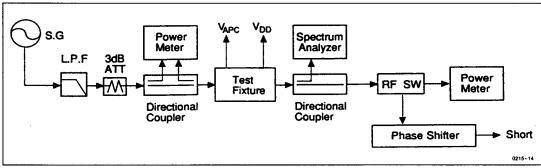


Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

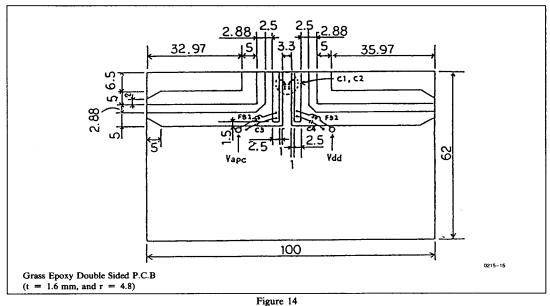
PF0027

61

0215-12

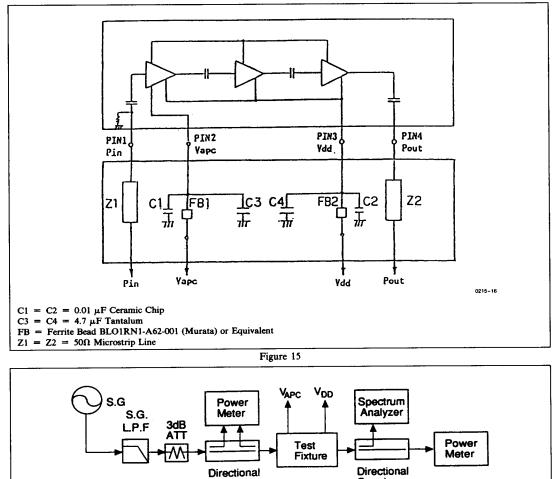


62


0215-13

TEST SYSTEM DIAGRAM

TEST FIXTURE PATTERN



PF0027

Unit: mm

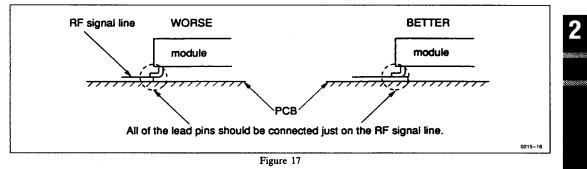
PF0027 -

III INTERNAL DIAGRAM AND EXTERNAL CIRCUIT

Output power P_{out} is defined at the root point of the module output pin P_{out} . The coefficient of output power loss in the PCB output line Z2 is: $1/(S_2)^2 = 1/(0.9805)^2 = 1.04$

Coupler

Coupler


0215-17

PF0027

■ NOTE FOR USE

- 1. Don't apply the reflow soldering process.
- 2. Don't apply the dipping solder process to the lead pins.
- 3. To avoid the stress against the lead pins, lead pins should be soldered after the soldering of ground flange.
- 4. Soldering temperature and time should be less than 230°C, 10 sec per each pin.
- To protect devices from electro-static damage, soldering iron, measuring equipment and human body etc. should be grounded.
- To avoid the degradation of efficiency and output power, lead pins should not be float from PCB, and connected just on the RF signal line. (Refer to Figure 17.)

- 7. Recommendation to decrease the thermal resistance is shown below.
 - a. Arrangement of through holes under as many as possible under **PF0027**.
 - b. Addition of external heat sink on the metal case of **PF0027**.
- 8. Don't wash PF0027 except led pins and ground flanges.
- It should be recommended to apply a non-chlorine solder for modules. For example, KR19 by Nihpn Almit Co., LTD.
- When the external parts (Isorator, Duplexer, etc.) of the module are changed, the electrical characteristics should be evaluated enough.
- When V_{APC} is increased more than 3V, output power is saturated, however, drain current is increased still more. So V_{APC} should be limitted less than 3V.

