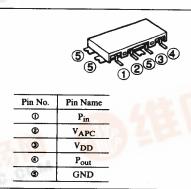
PF0025查询PF0025供应商

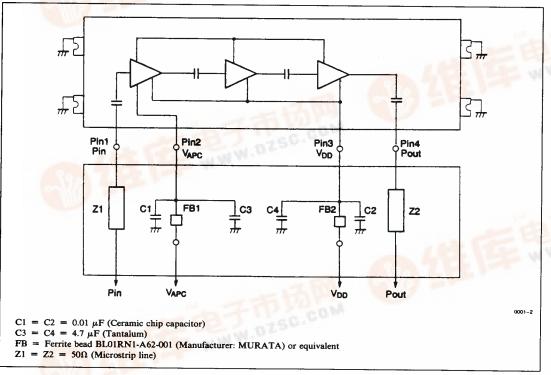
MOS FET Power Amplifier

FEATURES

- Surface Mounted Small Package 1 cc, 3g with Shielded Cover
- High Efficiency 47% Typical at Actual Output Condition 1.2W
- Low Voltage Operation 6V
- Low Power Control Current 300 μA


捷多邦,专业PCB打样工厂,24小时

加急出货


0001-1

2

PIN OUT

BLOCK DIAGRAM AND EXTERNAL CIRCUIT

PF0025 -----

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C)

Item	Symbol	Rating	Unit
Supply Voltage	V _{DD}	12	v
Supply Current	I _{DD}	2	A
APC Voltage	V _{APC}	±8	v
Input Power	P _{in}	20	mW
Operating Case Temperature	T _C (op)	- 30 to + 100	°C
Storage Temperature	T _{stg}	- 30 to + 100	•C

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Item	Symbol	Min	Max	Unit	Test Conditions	
Drain Cutoff Current	IDS	_	100	μΑ	$V_{DD} = 12V, V_{APC} = 0V, Rg = R_L = 50\Omega$	
Total Efficiency	ητ	43	—	%	f = 824 to 849 MHz, Pin = 2 mW, $V_{\text{DD}} = 6V, \text{ Rg} = \text{R}_{\text{L}} = 50\Omega,$ $P_{\text{out}} = 1.2W \text{ (at APC Controlled)}$	
2nd Harmonic Distortion	2nd H.D.	_	- 30	dB		
3rd Harmonic Distortion	3rd H.D.	—	- 30	dB		
Input VSWR	VSWR (in)	_	3	—		
Output VSWR	P _{out} (1)	1.6	_	w	$V_{DD} = 6V, F = 824 \text{ to } 849 \text{ MHz}, P_{in} = 2 \text{ mW},$ $V_{APC} = 4V, Rg = R_L = 50\Omega$	
Isolation	P _{out} (2)	-	- 40	dBm	$V_{DD} = 6V, f = 824 \text{ to } 849 \text{ MHz}, P_{in} = 2 \text{ mW},$ $V_{APC} = 0.5V, Rg = R_L = 50\Omega$	
Load VSWR Tolerance	_	No Degradation		_	$\begin{array}{l} V_{DD} \leq 8V, f = 824 \ \text{to} \ 849 \ \text{MHz}, P_{\text{in}} = 2 \ \text{mW}, \\ Rg = 50\Omega, V_{APC} \leq 4V, t = 20 \ \text{sec.}, \\ \text{Load VSWR} \leq 20 \ \text{All Phase Angles} \end{array}$	
Stability		No Parasitic Oscillation			$ \begin{array}{l} f = 824 \mbox{ to } 849 \mbox{ MHz}, P_{in} = 2 \mbox{ mW}, \\ V_{DD} = 5.2 \mbox{ to } 7.5 \mbox{ V}, P_{out} \leq 1.6 \mbox{ W}, Zg = 50 \mbox{ \Omega}, \\ Load \mbox{ VSWR } \leq 3 \mbox{ All Phase Angles} \end{array} $	

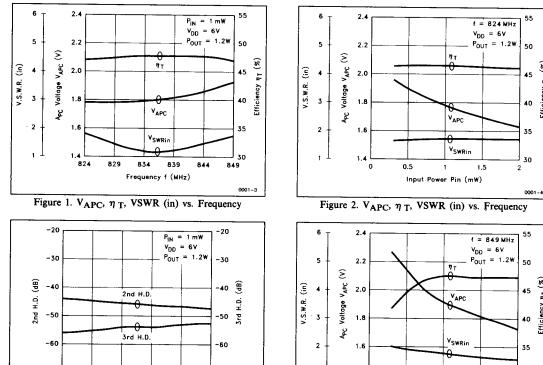
HITACHI

46

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

11 (%)

Efficiency

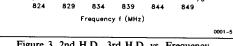

Efficiency n_T (%)

30

0001-6

2

2



-70

1 L

1.4

0

-70

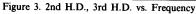


Figure 4. VAPC, η T, VSWR (in) vs. Input Power

1

Input Power Pin (mW)

1.5

0.5

47

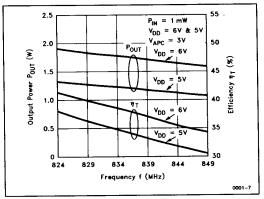


Figure 5. Pout, η T vs. Frequency

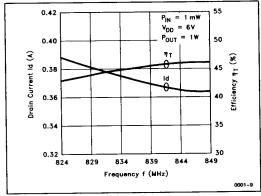
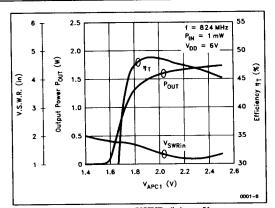
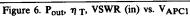




Figure 7. ID, η T vs. Frequency

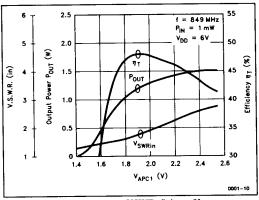


Figure 8. Pout, 7 T, VSWR (in) vs. VAPC1

HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

PF0025

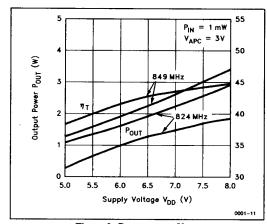


Figure 9. Pout, η_{T} vs. V_{DD}

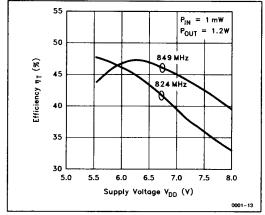


Figure 11. η T vs. V_{DD}

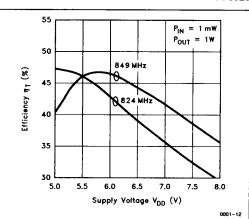
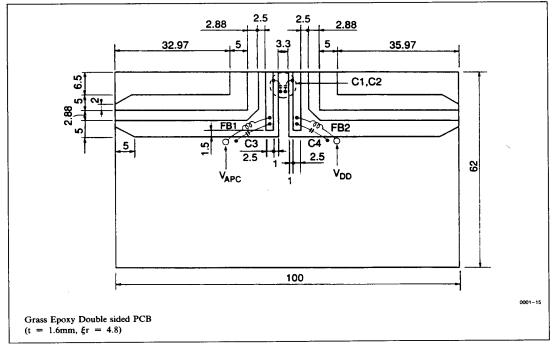



Figure 10. η_{T} vs. V_{DD}


PF0025 -

TEST SYSTEM DIAGRAM

TEST FIXTURE PATTERN

(Unit: mm)

PF0025

Notes for Use

- · Unevenness and distortion at the surface to attached PF0025 should be as small as possible.
- There should be no dust between the PF0025 and the surface to which it is attached.
- Don't apply the reflow soldering process to the whole of package.
- · Don't apply the dipping solder process to the lead pins.
- To avoid the stress against the lead pins, lead pins should be soldered after the soldering of ground flange.
- Soldering temperature and time should be less than 230°C, 10 sec.
- To protect devices from electro-static damage, soldering iron, measuring equipment and human body, etc., they should be grounded.
- To avoid the degradation of efficiency and output power, lead pins should not be floated from PCB, and connected just on the RF signal line. (Refer to Figure 12.)
- · Recommendation to decrease the thermal resistance is shown below.
 - 1. Arrangement of through holes under as many as possible under PF0025.
 - 2. Addition of external heat sink on the metal case of PF0025.

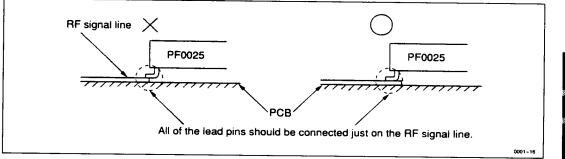
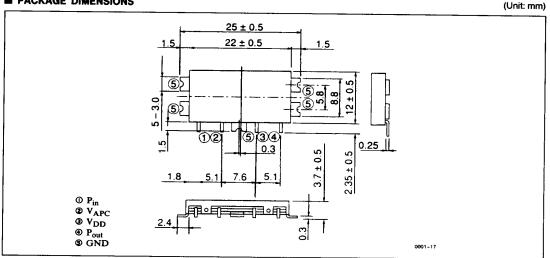



Figure 12

PACKAGE DIMENSIONS

......