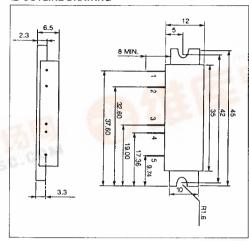
查询PF0015供应商 捷多邦,专业PCB打样工厂,24小时 MOS FET Power Amplifier Module for Handy Mobile Phone 地名山地

加急出货

MOS FET Power Amplifier FOR AMPS 824 ~ 849 MHz

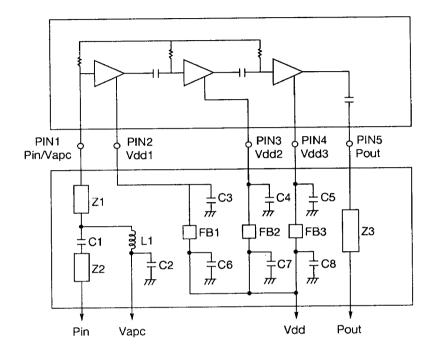
## **■ FEATURES**


- Small outline  $12 \times 45 \times 6.5 \text{ mm}^3$
- · Low voltage operation 6V
- Low power control current 300 μA
- High stability load VSWR ≥ 20

## ■ ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

| Item                       | Symbol             | Rating      | Unit |
|----------------------------|--------------------|-------------|------|
| Supply Voltage             | $V_{\mathrm{DD}}$  | 12          | V    |
| Supply Current             | $I_{\mathrm{DD}}$  | 2           | Α    |
| APC Voltage                | VAPC               | ± 8         | V    |
| Input Power                | Pin                | 20          | mW   |
| Operating Case Temperature | T <sub>C(op)</sub> | -30 ~ + 100 | °C   |
| Storage Temperature        | T <sub>stg</sub>   | -30 ~ + 100 | °C   |

The absolute maximum ratings are limiting values, to be applied individually, beyond which the device may be permanently damaged. Functional operation under any of these conditions is not guaranteed. Exposing a circuit to its absolute maximum rating for extended periods of time may affect the device's reliability.


## OUTLINE DRAWING



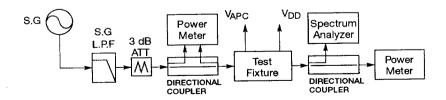
## ■ ELECTRICAL CHARACTERISTICS (Ta =

| Symbol              | Test Condition                                                                                                                                                                                                                                                     | min.                                                  | typ.                                                  | max.                                                   | Unit                                                   |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| I <sub>DS</sub>     | $V_{DD1} = V_{DD2} = V_{DD3} = 12V, V_{apc} = 0V$                                                                                                                                                                                                                  | _                                                     | _                                                     | 100                                                    | μΑ                                                     |
| $\eta_{\mathrm{T}}$ | $ f = 824, 849 \text{ MHz}, \\ P_{in} = 1 \text{ mW}, \\ V_{DD1} = V_{DD2} = V_{DD3} = 6V, \\ P_{out} = 1.2W \text{ (at APC Control)}, \\ Z_{in} = Z_{out} = 50 \Omega $                                                                                           | 35                                                    | 40                                                    | _                                                      | %                                                      |
| 2nd H.D.            |                                                                                                                                                                                                                                                                    | _                                                     | -40                                                   | -30                                                    | dB                                                     |
| 3rd H.D.            |                                                                                                                                                                                                                                                                    | _                                                     | -50                                                   | -30                                                    | dB                                                     |
| VSWR(in)            |                                                                                                                                                                                                                                                                    | _                                                     | 1.8                                                   | 3                                                      | _                                                      |
| VSWR(out)           |                                                                                                                                                                                                                                                                    | _                                                     | 2                                                     |                                                        | _                                                      |
| _                   | $\begin{array}{c} V_{DD1} = V_{DD2} = V_{DD3} = 6\text{V},  P_{in} = 1  \text{mW}, \\ f = 824  \text{MHz},  R_g = 50  \Omega, \\ P_{out} = 1.2\text{W}   (\text{at APC Control}), \\ Output  \text{VSWR} = 20  \text{All Phases},  t = 20  \text{sec} \end{array}$ | No Parastic Oscillation                               |                                                       |                                                        |                                                        |
|                     | l <sub>DS</sub> ηT  2nd H.D.  3rd H.D.  VSWR(in)                                                                                                                                                                                                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### **■ TEST SYSTEM DIAGRAM**



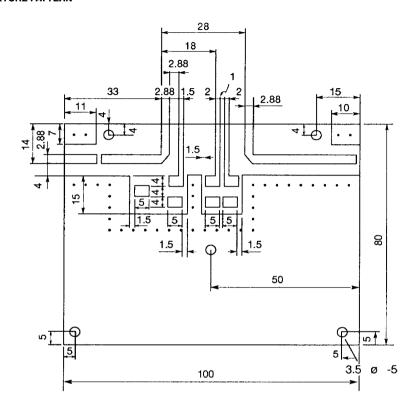
 $C_1 = 0.02 \mu F$  Ceramic Chip


 $C_2$ ,  $C_3$ ,  $C_4$ ,  $C_5 = 0.01 \mu F$  Ceramic Dip

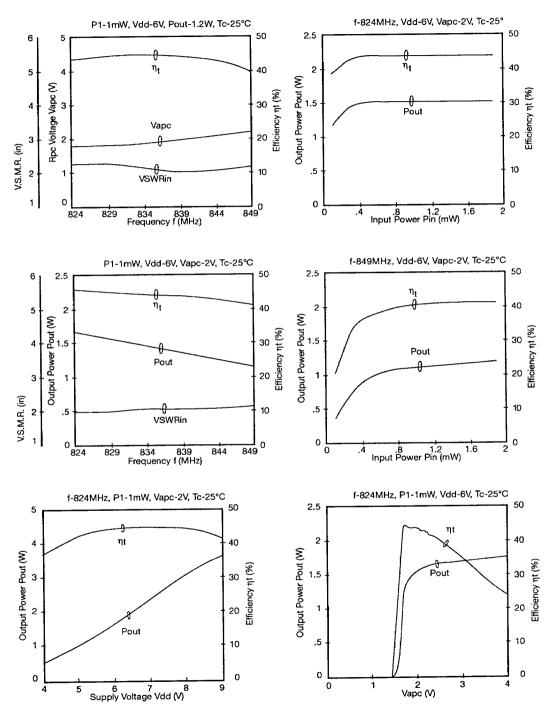
 $C_6$ ,  $C_7$ ,  $C_8 = 10 \mu F$  Tantalum

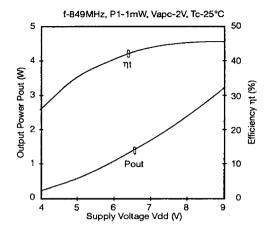
 $L_1 = RFC 1mm \phi$ , 15 turns

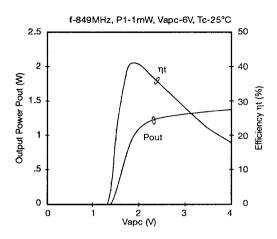
FB = Ferrite Bead BL01RN1-A62-001 (MURATA) or equivalent


 $Z_1$ ,  $Z_2$ ,  $Z_3 = 50 \Omega$  Microstrip Line




Output power P<sub>out</sub> is defined at the root point of the module output pin P<sub>out</sub>. The coefficient of output power loss in the PCB output line Z3 is shown below.


$$1/S_{21})^2 = 1/(0.9805)^2 = 1.04$$


# **■ TEST FIXTURE PATTERN**



Grass Epoxy Double Sided PCB ( $t = 1.6 \text{ mm}, \epsilon r = 4.8$ )







### • Mechanical Characteristics

| Item                                    | Conditions       | Spec.            |  |
|-----------------------------------------|------------------|------------------|--|
| Torque for screw up the heatsink flange | M3 Screw-Bolts   | 4 ~ 6 kg/cm      |  |
| Warp size of the heatsink flange: S     | minimum mumimum. | S = O +0.3/-0 mm |  |

#### **Note for Use**

- 1. Unevenness and distortion at the surface of the heatsink attached PF0015 should be less than 0.05 mm.
- 2. It should not be existed any dust between PF0015 and heatsink.
- 3. PF0015 should be separated from PCB more than 1.5 mm.
- 4. Soldering temperature and soldering time should be less than 230°C, 10 sec. (Soldering position spaced from the root point of the lead frame: 2 mm).
- 5. Recommendation of thermal joint compounds is TYPE G746 (Manufacturer: Shin-Etu Chemical, Co., Ltd.) or equivalent.
- 6. To protect devices from electro-static damage, soldering iron, measuring-equipment and human body etc. should be grounded.