CMOS MICROCONTROLLER FOR TELEPHONE SETS

GENERAL DESCRIPTION

The PCD3315 is a single-chip 8-bit microcontroller fabricated in CMOS and is a member of the PCD33XX family. It has special on-chip features for application in telephone sets. For further detailed information, see PCD33XX family specification.

Features

- 8-bit CPU, ROM, RAM, I/O in a single 28-lead DIL or SO package
- 1536 ROM bytes
- 160 RAM bytes
- 20 quasi-bidirectional I/O port lines
- Two test inputs: one of which is also the external interrupt input (CE/TO)
- Single-level vectored interrupts: external, timer/event counter
- 8-bit programmable timer/event counter
- Over 80 instructions (based on MAB8048)
- All instructions 1 or 2 cycles
- Clock frequency 100 kHz to 10 MHz
- Single supply voltage from 1,8 V to 6 V
- Low standby voltage and current
- STOP and IDLE mode
- On-chip oscillator with output drive capability for peripherals
- Configuration of all I/O port lines individually selected by mask: pull-up, open drain or push-pull
- Power-on-reset circuit and low supply voltage detection
- Reset state of all ports individually selected by mask
- Operating temperature range: -25 to + 70 °C

PACKAGE OUTLINES

f.dzsc.com

PCD3315P: 28-lead DIL; plastic (SOT117).

PCD3315T: 28-lead mini-pack; plastic (SO28; SOT136A).

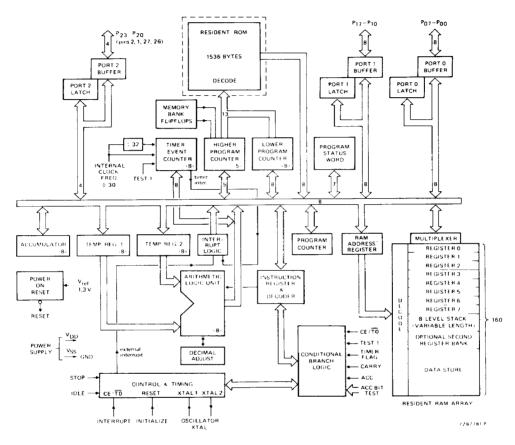


Fig. 1 Block diagram; PCD3315.

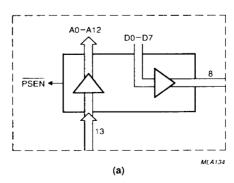


Fig. 1a Replacement of dotted part in Fig. 1, for the PCD3301B 'Piggy-back' version.

 V_{DD}

28

PINNING

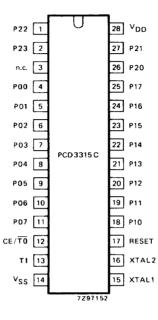


Fig. 2 Pinning diagram: PCD3315.

ATION	
n.c.	not connected
P00-P07	Port 0: 8-bit quasi-bidirectional I/O port.
CE/TO	Interrupt/Test 0: external interrupt input (sensitive to positive-going edge edge)/test input pin; when used as a test input directly tested by conditional branch instructions JTO and JNTO.
T1	Test 1: test input pin, directly tested by conditional branch instructions JT1 and JNT1. T1 also functions as an input to the 8-bit timer/event counter, using the STRT CNT instruction.
V_{SS}	Ground: circuit earth potential.
XTAL 1	Crystal input: connection to timing component (crystal) which determines the frequency of the internal oscillator; also the input for an external clock source.
XTAL 2	connection to the other side of the timing component.
RESET	Reset input: used to initialize the processor (active HIGH), or output of power-on-reset circuit.
P10-P17	Port 1: 8-bit quasi-bidirectional I/O port.
P20-P23	Port 2: 4-bit quasi-bidirectional I/O port.
	P00-P07 CE/T0 T1 VSS XTAL 1 XTAL 2 RESET P10-P17

Power supply: 1,8 V to 6 V.

D.C. CHARACTERISTICS

 V_{DD} = 2,5 to 6 V; V_{SS} = 0 V; T_{amb} = -25 to + 70 °C; all voltages with respect to V_{SS} ; f = 3,58 MHz with R_S = 50 Ω ; unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Supply voltage					
operating	VDD	1,8	-	6	V
STOP mode for RAM retention	VDD	1,0	-	6	V
Supply current					
operating			350		μА
at V _{DD} = 3 V	מסי	_	350	_	μΑ
IDLE mode at V _{DD} = 3 V	IDD	_	150	_	μА
STOP mode (note 1)	טט.		,50		L
at V _{DD} = 1,8 V; T _{amb} = 25 °C	IDD	_	1,2	2,5	μΑ
at V _{DD} = 1,8 V; T _{amb} = 55 °C	IDD	_	_	5	μА
at V _{DD} = 1,8 V; T _{amb} = 70 °C	1DD	_		10	μΑ
at app 1,5 th amb 15 c	100				
RESET I/O					
Switching level	VRESET	-	1,2	-	V
Sink current					
at V_{DD} $>$ V_{RESET}	IOL	_	7	-	μΑ
Inputs					ŀ
Input voltage LOW	VIL	0	-	0,3V _{DD}	V
Input voltage HIGH	VIH	0,7V _{DD}	1 –	V _{DD}	V
Input leakage current			1		
at $V_{SS} < V_1 < V_{DD}$	± 11L		-	1	μΑ
Outputs					
Output voltage LOW					
at $V_1 = V_{SS}$ or V_{DD} ; $ I_O < 1 \mu A$	VOL	-	-	0,05	V
Output sink current LOW					
at $V_{DD} = 3 \text{ V}; V_{O} = 0.4 \text{ V}$	IOL	0,6	1,5	-	mA
Pull-up output source current HIGH					
at V_{DD} = 3 V; V_{O} = 0,9 V_{DD}	^{−l} oн	10	_	_	μΑ
at V_{DD} = 3 V; V_{O} = V_{SS}	-loH	_	-	200	μΑ
Push-pull output source current HIGH		0.0	1.5		
at $V_{DD} = 3 \text{ V}$; $V_{O} = V_{DD} - 0.4 \text{ V}$	_loн	0,6	1,5		mA

Note 1

Crystal connected between XTAL 1 and XTAL 2; pin 2 pulled to VDD via 5,6 k Ω resistor; CE and T1 at VSS.