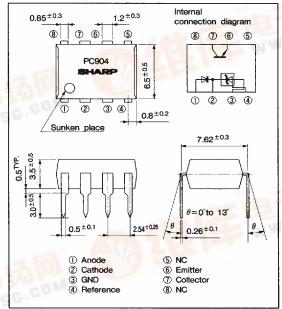
PC904

Built-in Voltage Detection Circuit Type Photocoupler

*Lead forming type (I type) and taping reel type (P type) are also available. (PC904I/PC904P) (Page 656)


Features

- 1. Built-in voltage detection circuit
- 2. High isolation voltage between input and output (V_{iso}: 5 000V_{rms})
- 3. Standard 8-pin dual-in-line package
- 4. Recognizerd by UL, file No. E64380

Applications

1. Switching power supplies

Outline Dimensions (Unit: mm)

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

	are meximin recurso		,	1 a - 20 C)
	Parameter	Symbol	Rating	Unit
Input	Anode current	IA	50	mA
	Anode voltage	VA	30	V
	Reference input current	I _{REF}	10	mA
	Power dissipation	P	250	mW
	Collector-emitter voltage	VCEO	35	V
Output	Emitter-collector voltage	VECO	6	V
	Collector current	I_{C}	50	mA
	Collector power dissipation	Pc	150	mW
	Total power dissipation	P _{tot}	350	mW
	*1Isolation voltage	Viso	5 000	V _{rms}
	Operating temperature	T_{opr}	-25 to +85	°C
Storage temperature		T_{stg}	-40 to $+125$	°C
	*2Soldering temperature	$T_{\rm sol}$	260	°C

10 to 60%RH AC for 1 minute

10 seconds

8180798 0011787 1TT

Electro-optical Characteristics

(Ta=25℃)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Fig.
Input	Reference voltage	VREF	$V_K = V_{REF}$, $I_A = 10 \text{mA}$	2.40	2.495	2.60	V	1
	*3Temperature change in reference voltage	V _{REF(dev)}	$V_{K}=V_{REF}$, $I_{A}=10mA$, $T_{A}=-25$ to $+85$ °C	_	8	40	mV	1
	Voltage variation ratio in reference voltage	$\Delta V_{REF}/\Delta V_A$	$I_A=10\text{mA}, \ \Delta V_A=30\text{V}-V_{REF}$	_	-1.4	-5	mV/V	2
	Reference input current	IREF	$I_A=10\text{mA}, R_3=10\text{k}\Omega$		2	10	μА	3
	*4Temperature change in reference input current	I _{REF(dev)}	$I_A=10mA$, $R_3=10k\Omega$, $T_a=-25$ to $+85$ °C	_	0.4	3	μA	3
	Minimum drive current	I _{MIN}	$V_{K} = V_{REF}$	_	1	2	mA	1
	OFF-state anode current	Ioff	$V_A=30V$, $V_{REF}=GND$	_	0.1	2	μΑ	4
	Anode-cathode forward voltage	V_{F}	$V_K = V_{REF}, I_A = 10mA$	_	1.2	1.4	V	1
Output	Collector dark current	ICEO	$V_{CE} = 35V$	_	1×10 ⁻⁹	1×10^{-7}	A	5
Transfer charac- teristics	*5Current transfer ratio	CTR	$V_K = V_{REF}$, $I_A = 5mA$, $V_{CE} = 5V$	50	_	600	%	6
	Collector-emitter saturation voltage	V _{CE(sat)}	$V_{K}\!=\!V_{REF},\;I_{A}\!=\!10mA,\;I_{C}\!=\!1mA$	_	0.1	0.2	v	6
	Isolation resistance	Riso	40 to 60%RH, DC500V	5×10^{10}	1×10^{11}	_	Ω	_
	Floating capacitance	Cf	V=0, $f=1kHz$	_	0.6	1.0	pF	_

^{*3} $V_{REF(dev)} = V_{REF(MAX.)} - V_{REF(MIN.)}$

Classification table of current transfer ratio is shown below. (4 models)

Model No.	Rank mark	CTR (%)				
PC904A	A	50 to 150				
PC904B	В	100 to 300				
PC904C	С	250 to 600				
PC904	A, B or C	50 to 600				

Test Circuit

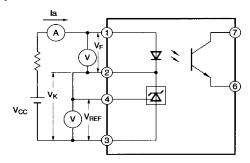
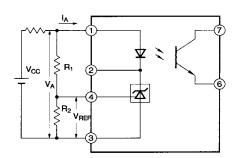



Fig. 2

^{*4} I_{REF(dev)}=I_{REF(MAX.)}-I_{REF(MIN.)} *5 CTR=I_C/I_A×100 (%)

Photocouplers

Fig. 3

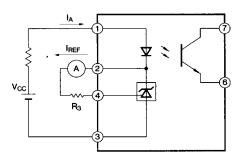


Fig. 4

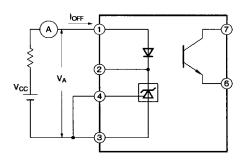
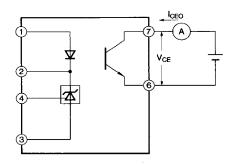



Fig. 5

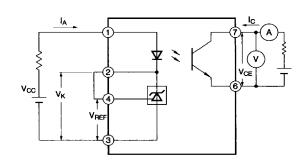


Fig. 7 Anode Current vs. Ambient

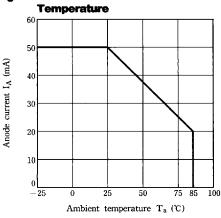


Fig. 8 Input Power Dissipation vs.

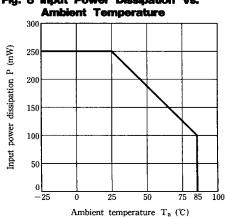


Fig. 9 Collector Power Dissipation vs.
Ambient Temperature

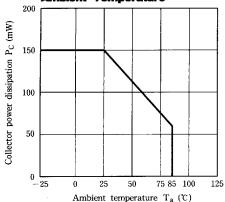


Fig.11 Relative Current Transfer Ratio vs.
Ambient Temperature

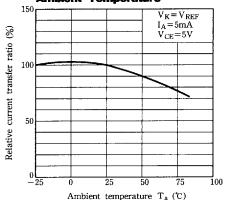


Fig.13-a Anode Current vs. Reference Voltage

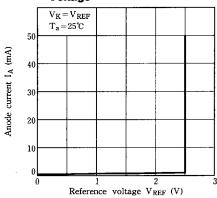


Fig.10 Power Dissipation vs. Ambient Temperature

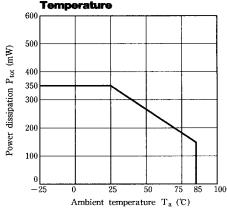


Fig.12 Collector Dark Current vs.

Ambient Temperature

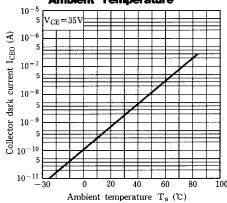


Fig.13-b Anode Current vs. Reference Voltage

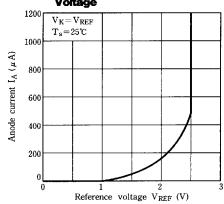


Fig.14 OFF-state Anode Current vs.
Ambient Temperature

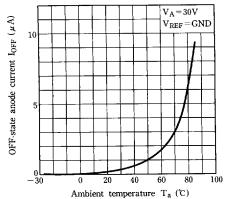


Fig.16 Reference Input Current vs.
Ambient Temperature

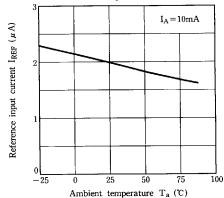


Fig. 18-a Voltage Gain (1) vs. Frequency

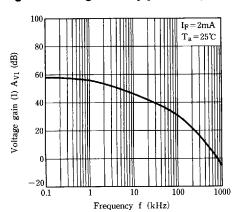


Fig.15 Reference Voltage Change vs.

Ambient Temperature

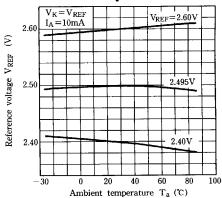
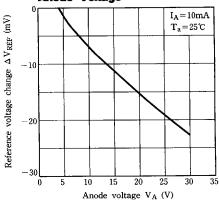



Fig.17 Reference Voltage Change vs. Anode Voltage

Test Circuit for Voltage Gain (1) vs. Frequency

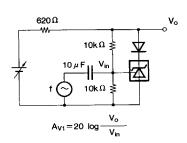


Fig.18-b Voltage Gain (2) vs. Frequency

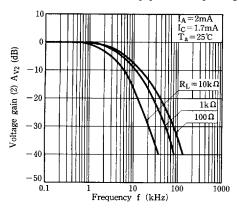


Fig.19 Anode Current vs. Load Capacitance

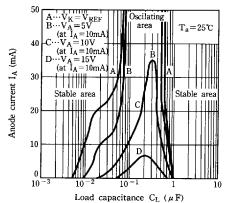
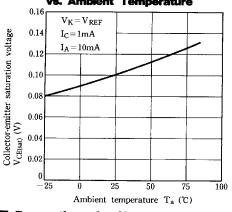
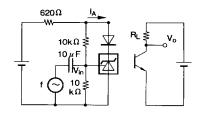




Fig.20 Collector-emitter Saturation Voltage vs. Ambient Temperature

Test Circuit for Voltage Gain (2) vs. Frequency

Test Circuit for Anode Current vs. Load Capacitance

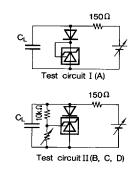
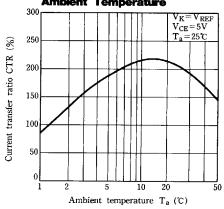



Fig.21 Current Transfer Ratio vs. Ambient Temperature

■ Precautions for Use

Handle this product the same as with other integrated circuits against static electricity.

• As for other general cautions, refer to the chapter "Precautions for Use" (Page 78 to 93).