# PC900V0NSZX/ PC900V0YSZX

### ■ Features

- 1. Normal OFF operation, open collector output
- 2. TTL and LSTTL compatible output
- 3. Operating supply voltage Vcc:3 to 15V
- 4. Isolation voltage (Viso (rms):5kV)
- 5. Recognized by UL, file No.E64380 Approved by TÜV (VDE0884) (PC900V0YSZX)
- 6. 6-pin DIP package

# Applications

- 1. Programmable controllers
- 2. PC peripherals
- 3. Electronic musical instruments

# ■ Model Line-up

| Model No    | * Safty St | tandard<br>roval | Package | Packing |  |
|-------------|------------|------------------|---------|---------|--|
| Model No.   | UL         | TÜV<br>(VDE0884) | C       |         |  |
| PC900V0NSZX | 0          | _                | DIP     | Sleeve  |  |
| PC900V0YSZX | 0          | 0                | DIP     | Siceve  |  |

Symbol

Parameter

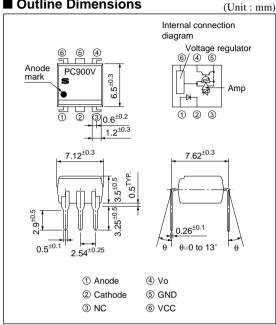
# ■ Absolute Maximum Ratings

Forward current

| 50 | mA |
|----|----|
| 1  | A  |
| 6  | V  |
| 70 | mW |
| 6  | V  |
| 6  | V  |
| 50 | mA |

Rating

(Ta=25°C)


Unit

|                          | I of ward carrent         |                  |             |    |
|--------------------------|---------------------------|------------------|-------------|----|
| Input                    | *1 Peak forward current   | IFM              | 1           | A  |
|                          | Reverse voltage           | $V_{\text{R}}$   | 6           | V  |
|                          | Power dissipation         | P                | 70          | mW |
|                          | Supply voltage            | $V_{\rm CC}$     | 16          | V  |
| Output                   | High level output voltage | Voh              | 16          | V  |
| Output                   | Low level output current  | Iol              | 50          | mA |
|                          | Power dissipation         | Po               | 150         | mW |
| Total power dissipation  |                           | Ptot             | 170         | mW |
| *2 Isolation voltage     |                           | Viso (rms)       | 5           | kV |
| Operating temperature    |                           | $T_{opr}$        | -25 to +85  | °C |
| Storage temperature      |                           | $T_{\text{stg}}$ | -40 to +125 | °C |
| *3 Soldering temperature |                           | Tsol             | 260         | °C |

<sup>\*1</sup> Pulse width≤100µs, Duty ratio=0.001

# **Digital Output Type OPIC Photocoupler**

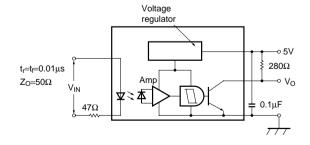
### ■ Outline Dimensions

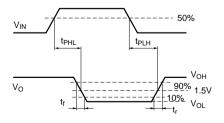


\* "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

<sup>\*</sup> Application Model No. PC900V

<sup>\*2 40</sup> to 60% RH, AC for 1 min


<sup>\*3</sup> For 10 s


**Electro-optical Characteristics** 

| ■ Electro-optical Characteristics |                                                                                         |                          |                                                             | (Ta=0 to 70°C unless spesified) |      |      |      |
|-----------------------------------|-----------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------|---------------------------------|------|------|------|
|                                   | Parameter                                                                               | Symbol                   | Conditions                                                  | MIN.                            | TYP. | MAX. | Unit |
|                                   | -                                                                                       | VF                       | I <sub>F</sub> =4mA                                         | -                               | 1.1  | 1.4  | v    |
| Input                             | Forward voltage                                                                         | <b>V</b> F               | I <sub>F</sub> =0.3mA                                       | 0.7                             | 1.0  | _    | v    |
| Input                             | Reverse current                                                                         | IR                       | Ta=25°C, V <sub>R</sub> =3V                                 | _                               | _    | 10   | μA   |
|                                   | Terminal capacitance                                                                    | Ct                       | Ta=25°C, V=0, f=1kHz                                        | _                               | 30   | 250  | pF   |
|                                   | Operating supply voltage                                                                | Vcc                      |                                                             | 3                               | -    | 15   | V    |
|                                   | Low level output voltage                                                                | Vol                      | Iol=16mA, Vcc=5V, I <sub>F</sub> =4mA                       | _                               | 0.2  | 0.4  | V    |
|                                   | High level output current                                                               | Іон                      | Vo=Vcc=15V, I <sub>F</sub> =250μA                           | _                               | _    | 100  | μA   |
|                                   | Low level supply current                                                                | Iccl                     | Vcc=5.5V, I <sub>F</sub> =0                                 | _                               | 2.5  | 5.0  | mA   |
|                                   | High level supply current                                                               | Іссн                     | Vcc=5V, I <sub>F</sub> =0                                   | _                               | 1.0  | 5.0  | mA   |
| Output                            | *4 "High→Low" threshold                                                                 | Ta=25°C, Vcc=5V, RL=280Ω | _                                                           | 1.1                             | 2.0  | A    |      |
|                                   | input current                                                                           | IFHL                     | $V_{CC}=5V$ , $R_L=280\Omega$                               | _                               | _    | 4.0  | mA   |
|                                   | *5 "Low→High" threshold                                                                 | _                        | Ta=25°C, Vcc=5V, Rl=280 $\Omega$                            | 0.4                             | 0.8  | _    |      |
|                                   | input current                                                                           | IFLH                     | Vcc=5V, Rl=280Ω                                             | 0.3                             | _    | _    | mA   |
|                                   | *6 Hysteresis                                                                           | IFLH/IFHL                | Vcc=5V, Rl=280Ω                                             | 0.5                             | 0.7  | 0.9  | _    |
|                                   | Isolation resistance                                                                    |                          | Ta=25°C, DC=500V, 40 to 60%RH                               | 5×10 <sup>10</sup>              | 1011 | -    | Ω    |
|                                   | "High→Low" propagation delay time                                                       | <b>t</b> PHL             |                                                             | _                               | 1    | 3    |      |
| Transfer<br>charac-               | "High→Low" propagation delay time "Low→High" propagation delay time Fall time Rise time | tplh                     | Ta=25°C                                                     | _                               | 2    | 6    | μs   |
| teristics                         |                                                                                         | <b>t</b> f               | Vcc=5V, I <sub>F</sub> =4mA<br>R <sub>L</sub> =280 $\Omega$ | _                               | 0.05 | 0.5  |      |
|                                   | © Rise time                                                                             | tr                       | 10000                                                       | _                               | 0.1  | 0.5  |      |

<sup>\*4</sup> IFHL represents forward current when output goes from high to low.

Fig.1 Test Circuit for Response Time





<sup>\*5</sup> IFLH represents forward current when output goes from low to high.

<sup>\*6</sup> Hysteresis stands for IFLH/IFHL.

\*7 Test circuit for response time is shown below.

Fig.2 Forward Current vs. Ambient Temperature

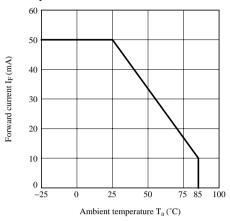



Fig.4 Forward Current vs. Forward Voltage

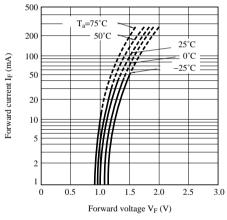



Fig.6 Relative Threshold Input Current vs. Ambient Temperature

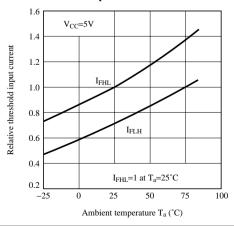



Fig.3 Power Dissipation vs. Ambient Temperature

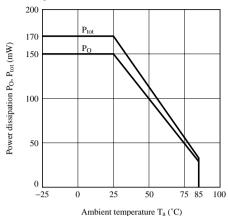



Fig.5 Relative Threshold Input Current vs. Supply Voltage

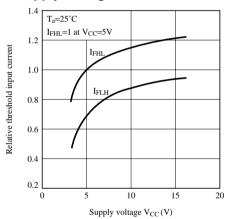



Fig.7 Low Level Output Voltage vs. Low Level Output Current

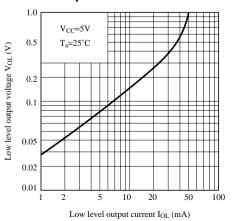



Fig.8 Low Level Output Voltage vs. Ambient Temperature

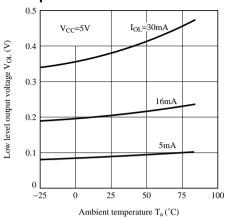



Fig.10 Propagation Delay Time vs. Forward Current

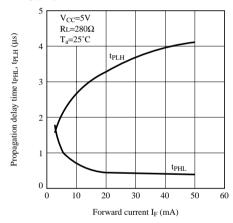



Fig.9 Supply Current vs. Supply Voltage

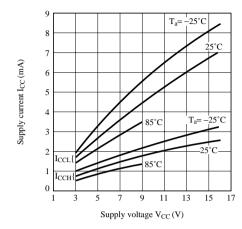
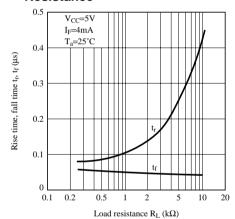




Fig.11 Rise Time, Fall Time vs. Load Resistance



### ■ Precautions for Use

- 1. It is recommended that a by-pass capacitor of more than  $0.01\mu F$  is added between  $V_{CC}$  and GND near the device in order to stabilize power supply line.
- 2. Handle this product the same as with other integrated circuits against static electricity.

#### **NOTICE**

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
  - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
  - Personal computers
  - Office automation equipment
  - Telecommunication equipment [terminal]
  - Test and measurement equipment
- Industrial control
- Audio visual equipment
- Consumer electronics
- (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices, etc.
- (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
- Space applications
- Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).
- •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this
  publication.

# PC900V0NIZX/ PC900V0NIPX

### ■ Features

- 1. Normal OFF operation, open collector output
- 2. TTL and LSTTL compatible output
- 3. Operating supply voltage Vcc:3 to 15V
- 4. Isolation voltage (Viso (rms):5kV)
- 5. Recognized by UL, file No.E64380
- 6. 6-pin DIP package (Lead forming type)

# Applications

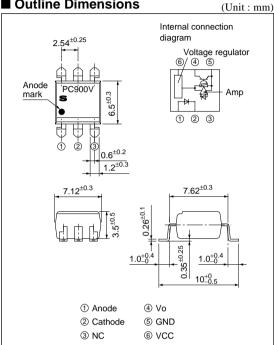
- 1. Programmable controllers
- 2. PC peripherals
- 3. Electronic musical instruments

# ■ Model Line-up

| Model No.   | * Safty Si | tandard<br>roval | Package | Packing |  |
|-------------|------------|------------------|---------|---------|--|
| Model No.   | UL         | TÜV<br>(VDE0884) | Tuckage |         |  |
| PC900V0NIZX | 0          | _                | Surface | Sleeve  |  |
| PC900V0NIPX | 0          | _                | Mount   | Taping  |  |

<sup>\*</sup> Application Model No. PC900V

## ■ Absolute Maximum Ratings


| - | $T_{a}$ | =2 | 5° | C |
|---|---------|----|----|---|
|   |         |    |    |   |

| Parameter             |                           | Symbol           | Rating      | Unit |
|-----------------------|---------------------------|------------------|-------------|------|
|                       | Forward current           | $I_{\mathrm{F}}$ | 50          | mA   |
| Input                 | *1 Peak forward current   | IFM              | 1           | A    |
| прис                  | Reverse voltage           | $V_{\text{R}}$   | 6           | V    |
|                       | Power dissipation         | P                | 70          | mW   |
|                       | Supply voltage            | $V_{CC}$         | 16          | V    |
| Output                | High level output voltage | Voh              | 16          | V    |
| Output                | Low level output current  | Iol              | 50          | mA   |
|                       | Power dissipation         | Po               | 150         | mW   |
|                       | Total power dissipation   | Ptot             | 170         | mW   |
| *2 Isolation voltage  |                           | Viso (rms)       | 5           | kV   |
| Operating temperature |                           | Topr             | -25 to +85  | °C   |
| Storage temperature   |                           | Tstg             | -40 to +125 | °C   |
|                       | *3 Soldering temperature  | Tsol             | 260         | °C   |

<sup>\*1</sup> Pulse width≤100µs, Duty ratio=0.001

# **Digital Output Type OPIC Photocoupler**

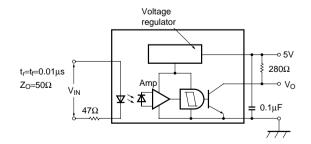
### ■ Outline Dimensions

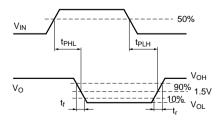


\* "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

<sup>\*2 40</sup> to 60% RH, AC for 1 min

<sup>\*3</sup> For 10 s


(TE 0 / 700C 1 'C' 1)


Flectro-optical Characteristics

| Electro-optical Characteristics |                                       |                                       |                                                             |                                       | (Ta=0 to 70°C unless spesified) |      |      |      |
|---------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------------------|---------------------------------------|---------------------------------|------|------|------|
|                                 | Parameter S                           |                                       | Symbol                                                      | Conditions                            | MIN.                            | TYP. | MAX. | Unit |
| Input                           |                                       | 37                                    | I <sub>F</sub> =4mA                                         | _                                     | 1.1                             | 1.4  | V    |      |
|                                 | Forward voltage                       |                                       | $V_F$                                                       | I <sub>F</sub> =0.3mA                 | 0.7                             | 1.0  | _    | v    |
|                                 | R                                     | Reverse current                       |                                                             | Ta=25°C, V <sub>R</sub> =3V           | _                               | _    | 10   | μΑ   |
|                                 | Terminal capacitance                  |                                       | Ct                                                          | Ta=25°C, V=0, f=1kHz                  | _                               | 30   | 250  | pF   |
|                                 | C                                     | perating supply voltage               | Vcc                                                         |                                       | 3                               | _    | 15   | V    |
|                                 | L                                     | ow level output voltage               | Vol                                                         | Iol=16mA, Vcc=5V, I <sub>F</sub> =4mA | -                               | 0.2  | 0.4  | V    |
|                                 | Н                                     | ligh level output current             | Іон                                                         | Vo=Vcc=15V, I <sub>F</sub> =250μA     | -                               | _    | 100  | μΑ   |
|                                 | L                                     | Low level supply current              |                                                             | Vcc=5.5V, I <sub>F</sub> =0           | _                               | 2.5  | 5.0  | mA   |
|                                 | Н                                     | High level supply current             |                                                             | Vcc=5V, I <sub>F</sub> =0             | _                               | 1.0  | 5.0  | mA   |
| Output                          | *4 "High→Low" threshold input current |                                       | Ta=25°C, Vcc=5V, R                                          | Ta=25°C, Vcc=5V, Rl=280Ω              | - 1.1                           | 2.0  |      |      |
|                                 |                                       |                                       | IFHL                                                        | Vcc=5V, Rl=280Ω                       | _                               | _    | 4.0  | mA   |
|                                 | *5 "                                  | *5 "Low→High" threshold input current |                                                             | Ta=25°C, Vcc=5V, R <sub>L</sub> =280Ω | 0.4                             | 0.8  | _    | mA   |
|                                 |                                       |                                       |                                                             | Vcc=5V, RL=280Ω                       | 0.3                             | _    | _    |      |
|                                 | *6 H                                  | Iysteresis                            | IFLH/IFHL                                                   | Vcc=5V, Rl= $280\Omega$               | 0.5                             | 0.7  | 0.9  | _    |
|                                 | Isolation resistance                  |                                       | Riso                                                        | Ta=25°C, DC=500V, 40 to 60%RH         | 5×10 <sup>10</sup>              | 1011 | _    | Ω    |
|                                 | time                                  | "High→Low" propagation delay time     | <b>t</b> PHL                                                |                                       | -                               | 1    | 3    |      |
| Transfer                        | "Low→High" propagation delay time     | tplh                                  | Ta=25°C                                                     | -                                     | 2                               | 6    | μs   |      |
| charac-<br>teristics            |                                       | <b>t</b> f                            | Vcc=5V, I <sub>F</sub> =4mA<br>R <sub>L</sub> =280 $\Omega$ | _                                     | 0.05                            | 0.5  |      |      |
| constics                        | Res                                   | Rise time                             |                                                             | 10022                                 | -                               | 0.1  |      | 0.5  |

<sup>\*4</sup> IFHL represents forward current when output goes from high to low.

Fig.1 Test Circuit for Response Time





<sup>\*5</sup> IFLH represents forward current when output goes from low to high.

<sup>\*6</sup> Hysteresis stands for IFLH/IFHL.

\*7 Test circuit for response time is shown below.

Fig.2 Forward Current vs. Ambient Temperature

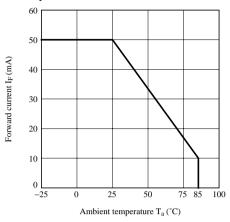



Fig.4 Forward Current vs. Forward Voltage

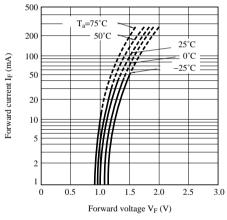



Fig.6 Relative Threshold Input Current vs. Ambient Temperature

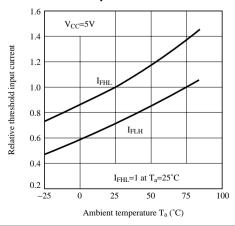



Fig.3 Power Dissipation vs. Ambient Temperature

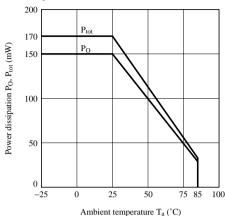



Fig.5 Relative Threshold Input Current vs. Supply Voltage

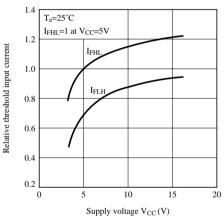



Fig.7 Low Level Output Voltage vs. Low Level Output Current

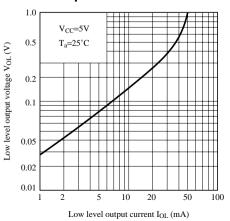



Fig.8 Low Level Output Voltage vs. Ambient Temperature

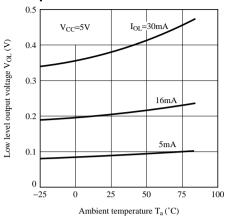



Fig.10 Propagation Delay Time vs. Forward Current

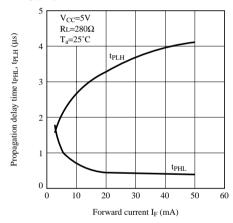



Fig.9 Supply Current vs. Supply Voltage

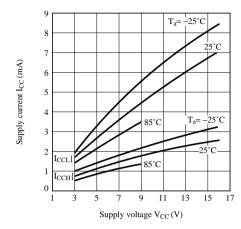
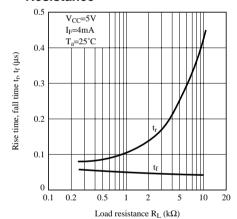




Fig.11 Rise Time, Fall Time vs. Load Resistance



### ■ Precautions for Use

- 1. It is recommended that a by-pass capacitor of more than  $0.01\mu F$  is added between  $V_{CC}$  and GND near the device in order to stabilize power supply line.
- 2. Handle this product the same as with other integrated circuits against static electricity.

#### **NOTICE**

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
  - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
  - Personal computers
  - Office automation equipment
  - Telecommunication equipment [terminal]
  - Test and measurement equipment
- Industrial control
- Audio visual equipment
- Consumer electronics
- (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices, etc.
- (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
- Space applications
- Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).
- •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this
  publication.