■ Features

- 1. High collector-emitter voltage (V_{CEO}: 70V)
- 2. Compact dual-in-line package

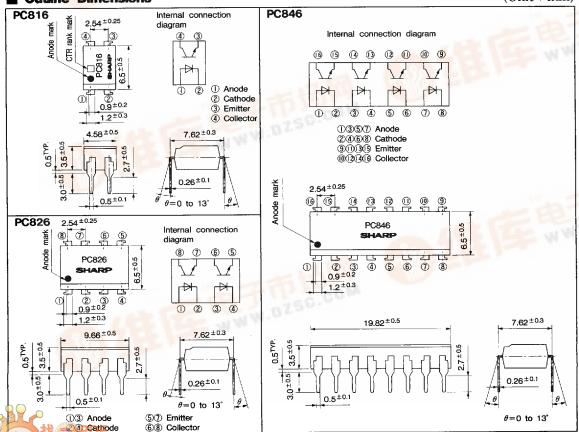
PC816 Series

PC816: 1-channel type

PC826: 2-channel type **PC846**: 4-channel type

- 3. High isolation voltage between input and output (V_{ISO}: 5 000V_{rms})
- 4. Current transfer ratio

(CTR: MIN. 50% at $I_F = 5mA$, $V_{CE} = 5V$)


5. Recognized by UL, file No. E64380

Applications

- 1. Programmable controllers, computers
- 2. System appliances, measuring instruments
- 3. Signal transmission between circuits of different potentials and impedances

(Unit: mm)

Outline Dimensions

8180798 QOL1737 674 **=**

Photocouplers

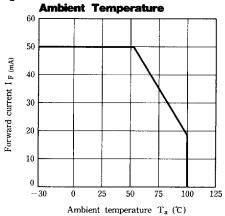
■ Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

	Parameter	Symbol	Rating	Unit
Input	Forward current	I_{F}	50	mA
	*1Peak forward current	I_{FM}	1	A
	Reverse voltage	VR	6	V
	Power dissipation	P	70	mW
Output	Collector-emitter voltage	VCEO	70	V
	Emitter-collector voltage	V _{ECO}	6	V
	Collector current	Ic	50	mA
	Collector power dissipation	Pc	150	mW
	Total power dissipation	P _{tot}	200	mW
	*2Isolation voltage	Viso	5 000	$V_{\rm rms}$
	Operating temperature	T_{opr}	-30 to +100	°C
	Storage temperature	Tstg	-55 to $+125$	$^{\circ}$ C
	*3Soldering temperature	T _{sol}	260	$^{\circ}$

^{*1} Pulse width $\leq 100 \,\mu$ s, Duty ratio = 0.001

■ Electro-optical Characteristics


 $(Ta = 25^{\circ}C)$

	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage		$V_{\rm F}$	$I_F = 20 \text{mA}$	- ⁻	1.2	1.4	V
	Peak forward voltage		V_{FM}	$I_{FM} = 0.5A$	_	_	3.0	V
	Reverse current		I_R	$V_R = 4V$	-	_	10	μΑ
	Terminal capacitance		Ct	V=0, $f=1kHz$	_	30	250	pF
Output	Collector dark	current	I CEO	$V_{\text{CE}} = 20 \text{V}, \ \text{I}_{\text{F}} = 0$		-	10-7	A
Transfer characteristics	*4Current transfer ratio		CTR	$I_F=5mA$, $V_{CE}=5V$	50	_	600	%
	Collector-emitter saturation voltage		V _{CE(sat)}	$I_F=20\text{mA},\ I_C=1\text{mA}$	_	0.1	0.2	V
	Isolation resistance		Riso	DC500V, 40 to 60%RH	5×10 ¹⁰	1×10^{11}	_	Ω
	Floating capacitance		Cf	V=0, $f=1MHz$	_	0.6	1.0	pF
	Cut-off frequency		fc	V_{CE} =5V, I_C =2mA, R_L =100 Ω , -3dB	_	80	_	kHz
	Response time	Rise time	tr	$V_{CE}=2V$, $I_{C}=2mA$	-	4	18	μs
		Fall time	t _f	$R_L = 100 \Omega$	_	3	18	μs

^{*4} Classification table of current transfer ratio is shown below.

Model No.	Rank mark	CTR (%)
PC816A	A	80 to 160
PC816B	В	130 to 260
PC816C	С	200 to 400
PC816D	D	300 to 600
PC816AB	A or B	80 to 260
PC816BC	B or C	130 to 400
PC816CD	C or D	200 to 600
PC816AC	A, B or D	80 to 400
PC816BD	B, C or D	130 to 600
PC816AD	A, B, C or D	80 to 600
PC816	A, B, C, D or No mark	50 to 600

Fig. 1 Forward Current vs.

^{*2 40} to 60%RH, AC for 1 minute

^{*3} For 10 seconds

Fig. 2 Collector Power Dissipation VS.
Ambient Temperature

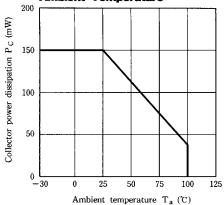


Fig. 4 Forward Current vs. Forward Voltage

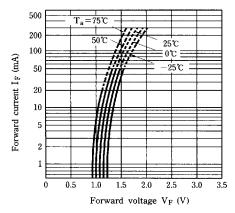


Fig. 6 Collector Current vs. Collector-emitter Voltage

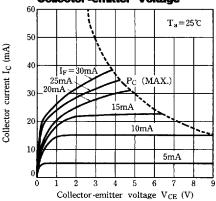


Fig. 3 Peak Forward Current vs. Duty Ratio

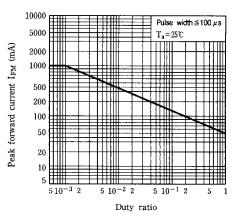


Fig. 5 Current Transfer Ratio vs. Forward Current

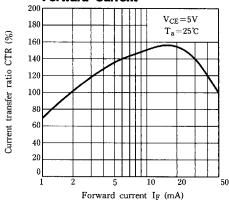


Fig. 7 Relative Current Transfer Ratio vs.
Ambient Temperature

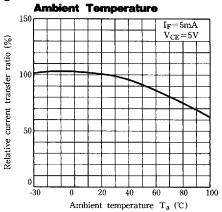


Fig. 8 Collector-emitter Saturation Voltage vs.
Ambient Temperature

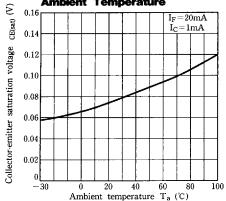
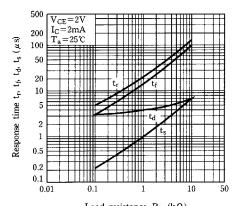



Fig.10 Response Time vs. Load Resistance

Load resistance R_L (k Ω)

Fig.11 Frequency Response

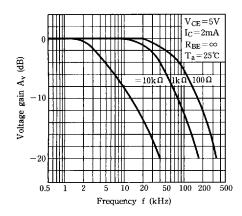
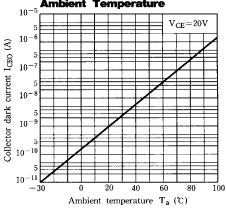
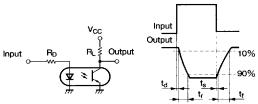




Fig. 9 Collector Dark Current vs. Ambient Temperature

Test Circuit for Response Time

Test Circuit for Frepuency Response

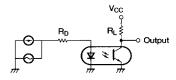



Fig.12 Collector-emitter Saturation Voltage vs. Forward Current

• Please refer to the chapter "Precautions for Use" (Page 78 to 93)