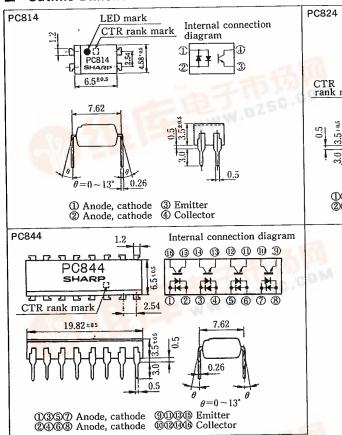
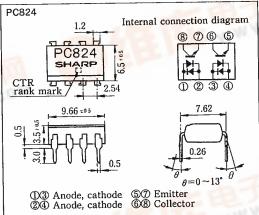
PC814 Series AC Input Type Photocoupler

Lead forming type (I type) is also available. (PC814I) (Page 482)

Features


- 1. AC or polarity insensitive input
- 2. High isolation voltage between input and output (V_{iso}: 5,000Vrms)
- 3. Compact dual-in-line package PC814 (1-channel type) PC824 (2-channel type)
- PC844 (4-channel type) 4. Current transfer ratio
- CTR: MIN. 20% at $I_F = \pm 1$ mA, $V_{CE} = 5$ V
- 5. UL recognized, file No. E64380


Applications

- Programmable controllers
- Telephone sets, telephone exchangers
- System appliances
- Signal transmission between circuits of different potentials and impedances

Outline Dimensions

(Unit: mm)

SHARP

350

SHARP ELEK/ MELEC DIV

Photocouplers

15E D 8180798 0002925 8

PC814 Series

■ Absolute Maximum Ratings

 $(Ta=25^{\circ}C)$

T-41-83

	Parameter	Symbol	Symbol Rating		
Input	Forward current	I _F	±50	mA	
	*¹Peak forward current	I _{FM}	±1	Α	
	Power dissipation	P	70	mW	
	Collector-emitter voltage	V _{CEO}	35	V	
[Emitter-collector voltage	· V _{ECO}	6	V	
Output	Collector current	I _c 50		mA	
ſ	Collector power dissipation	Pc	150	mW	
Total power dissipation		P _{tot}	200	mW	
*2Isolation voltage		Viso	5,000	Vrms	
Operating temperature		Topr	$-30 \sim +100$	℃	
Storage temperature		Tstg	-55~+125	.C	
*3Soldering temperature		Tsot	260	·c	

^{*1} Pulse width≤100µs, Duty ratio=0.001 *2 RH=40~60%, AC for 1 minute *3 For 10 seconds

Electro-optical Characteristics

 $(Ta=25^{\circ}C)$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Inpuut	Forward voltage	V _F	$I_F = \pm 20 \text{mA}$	_	1.2	1.4	V
	Peak forward voltage	V _{FM}	$I_{FM} = \pm 0.5A$		1	3.0	V
	Terminal capacitance	Ct	V=0, $f=1kHz$		50	250	pF
Output	Collector dark current	Iceo	$V_{CE} = 20V, I_{F} = 0$	-		10-7	Α
Transfer characteristics	**Current transfer ratio	CTR	$I_F = \pm 1 \text{mA}, V_{CE} = 5 \text{V}$	20		300	%
	Collector-emitter saturation voltage	V _{CE(sat)}	$I_r = \pm 20 \text{mA}, I_c = 1 \text{mA}$	_	0.1	0.2	V
	Isolation resistance	R _{iso}	DC500V, RH = $40 \sim 60\%$	5×1010	1011	-	Ω
	Floating capacitance	C _f	V=0, $f=1MHz$	_	0.6	1.0	pF
	Cut-off frequency	f _c	$V_{ce} = 5V$, $I_c = 2mA$, $R_L = 100\Omega$	15	80		kHz
	Response time (Rise)	tr	$V_{ce} = 2V, I_c = 2mA, R_L = 100\Omega$		4	18	μs
	Response time (Fall)	t _f		_	3	18	μs

*4 Classification table of current transfer ratio

Model No.	Rank mark	CTR (%)		
PC814A PC824A PC844A	A	50~150		
PC814 PC824 PC844	A or no mark	20~300		

Photocouplers T-41-83

Fig. 1 Forward Current vs. Ambient Temperature

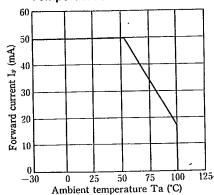


Fig. 2 Collector Power Dissipation vs. **Ambient Temperature**

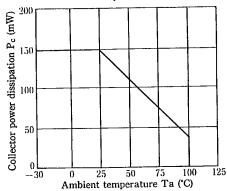


Fig. 3 Peak Forward Current vs. Duty Ratio

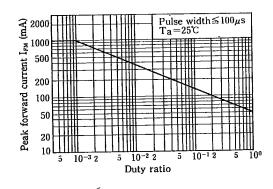
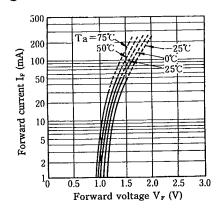



Fig. 4 Forward Current vs. Forward Voltage

Current Transfer Ratio vs. Forward Current

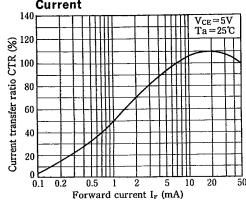
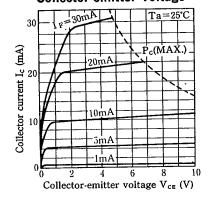



Fig. 6 Collector Current vs. Collector-emitter Voltage

T-41-83

Relative Current Transfer Ratio vs. Fig. 7 **Ambient Temperature**

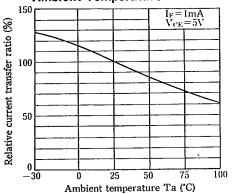
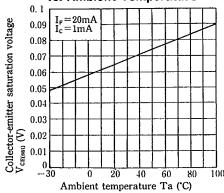



Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature

Collector Dark Current vs. Ambient Temperature

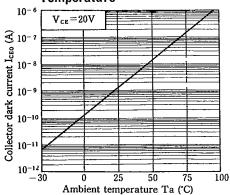


Fig. 10 Response Time vs. Load Resistance

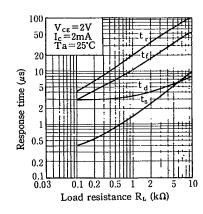
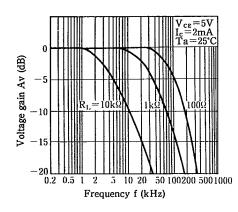
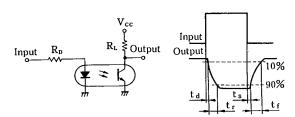
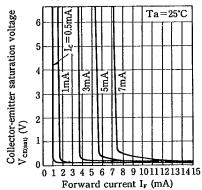
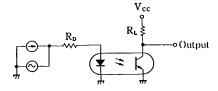




Fig. 11 Frequency Response


Test Circuit for Response Time


Photocouplers

T-41-83

Fig. 12 Collector-emitter Saturation Voltage vs. Forward Current

Test Circuit for Frequency Response

