T-41-83

High Speed Under High Load Resistance PC810 Photocoupler

Lead forming type (I type) is also available. (PC810I) (Page 482)

Features

1. High speed response under high load resis-

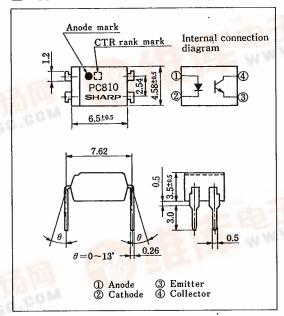
 $(t_{off}: MAX. 1ms at I_F=1mA, V_{cc}=5V,$ $R_L = 110k\Omega$

2. High current transfer ratio under low input current

(CTR: MIN. 60% at $I_F = 1mA$, $V_{CE} = 0.4V$)

3. High isolation voltage between input and output

 $(V_{iso}: 5,000Vrms)$


- Compact dual-in-line package
- UL recognized, file No. E64380

Applications

- Solid state relays
- Motor-control equipment
- Signal transmission between circuits of different potentials and impedances

Outline Dimensions

(Unit: mm)

Absolute Maximum Ratings

 $(Ta=25^{\circ}C)$

	Parameter	Symbol	Rating	Unit
	Forward current	I_{F}	50	mA
T.,,	*1Peak forward current	I _{FM}	1	A
Input	Reverse voltage	V _R	6	V
	Power dissipation	P	70	mW
	Collector-emitter voltage	V _{CEO}	35	V
O , ,	Emitter-collector voltage	VECO	6	V
Output	Collector current	I_c	50	mA
	Collector power dissipation	Pc	150	mW
10	Total power dissipation	P _{tot}	200	mW
	*2Isolation voltage	Viso	5,000	Vrms
	Operating temperature	Topr	$-30 \sim +100$	°C
	Storage temperature	T _{stg}	-55~+125	°C
	*3Soldering temperature	Tsol	260	°C

- Pulse width≤100µs, Duty ratio=0.001
- RH= $40\sim60\%$, AC for 1 minute
- *3 For 10 seconds

337

Photocoupler

T-41-83

Electro-optical Characteristics

 $(Ta=25^{\circ}C)$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Forward voltage	V_{F}	$I_F = 20 \text{mA}$	_	1.2	1.4	V
Ŧ.,	Peak forward voltage	V _{FM}	$I_{FM} = 0.5A$	1	1	3.0	V
Input	Reverse current	I _R	$V_R = 4V$	-	1	10	μA
	Terminal capacitance	C _t	V=0, $f=1kHz$		30	250	pF
Output	ut Collector dark current I_{CEO} $V_{CE} = 20V$, I_{I}		$V_{CE}=20V, I_F=0$	_	_	10-7	Α
	*5Current transfer ratio	CTR	$I_F=1mA$, $V_{CE}=0.4V$	60	1	200	%
	Collector-emitter saturation voltage	V _{CE(sat)}	$I_r=20\text{mA}, I_c=1\text{mA}$	_	0.1	0.2	V
Transfer	Isolation resistance	R _{iso}	DC500V, RH=40~60%	5×1010	1011	_	Ω
charac-	Floating capacitance	Cr	V=0, $f=1MHz$	_	0.6	1.0	pF
teristics	Cut-off frequency	fc	$V_{ce}=5V$, $I_c=2mA$, $R_L=1k\Omega$	6	60	_	, kHz
•	*5Response time (Rise)	tr	W -0V I -0-A D -11-0		10	50	μs
	*5Response time (Fall)	t _t	$V_{ce}=2V$, $I_c=2mA$, $R_L=1k\Omega$		10	50	μs
	*5Turn-off time	torr	$V_{cc}=5V$, $I_F=1mA$, $R_L=110k\Omega$		0.5	1.0	ms

^{*5} Classification table of current transfer ratio and response time is shown below.

۰	Model Rank No. mark	CTD (0/)	t _r (µs)		t, (μs)		torr (μs)		
		mark	CTR (%)	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.
	PC810A	A	60~120	4	15	3	15	350	500
	PC810B	В	100~200	10	50	10	50	500	1,000
	PC810	A or B	60~200	_	50	_	50	-	1,000

Fig. 1 Forward Current vs. Ambient Temperatur

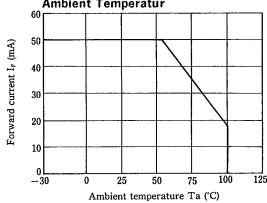


Fig. 2 Collector Power Dissipation vs.

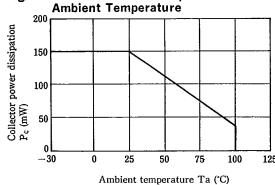
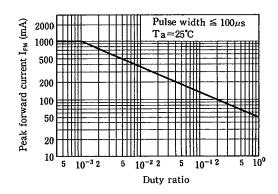



Fig. 3 Peak Forward Current vs. Duty Ratio

T-41-83

Fig. 4 Forward Current vs. Forward Voltage

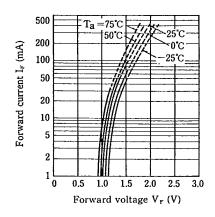


Fig. 5 Current Transfer Ratio vs. **Forward Current**

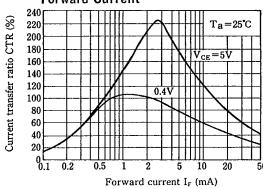
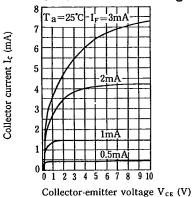



Fig. 6 Collector Current vs. Collector-emitter Voltage

Relative Current Transfer Ratio vs. **Ambient Temperature**

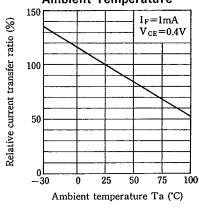


Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature

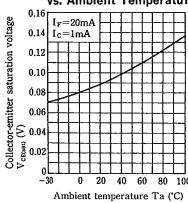
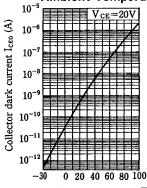



Fig. 9 Collector Dark Current vs. Ambient Temperature

Ambient temperature Ta ('C)

Fig. 10 Response Time vs. Load Resistance

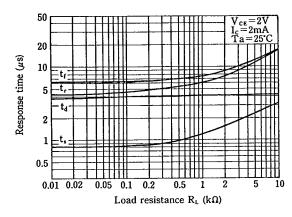


Fig. 11 Turn-off Time vs. Load Resistance

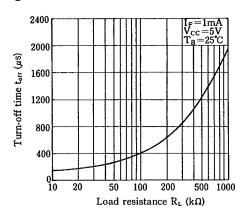


Fig. 12 Turn-off Time vs. **Ambient Temperature**

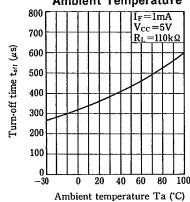
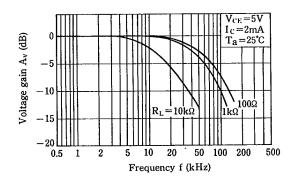



Fig. 13 Frequency Response

Test Circuit for Response Time

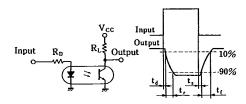
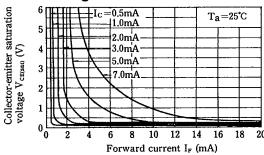
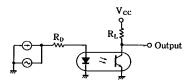




Fig. 14 **Collector-emitter Saturation** Voltage vs. Forward Current

Test Circuit for Frequency Response

