加急出货

Compact, Surface Mount Type

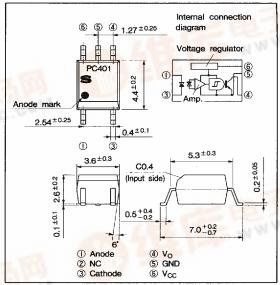
PC401

■ Features

- 1. Opaque, mini-flat package
- 2. "High" output during light emission
- 3. Isolation voltage between input and output $(V_{iso}: 3.750V_{rms})$
- 4. TTL and LSTTL compatible output
- 5. Recognized by UL, file No.64380

Applications

- 1. Hybrid substrate which requires high density mounting
- 2. Personal computers, office computers and peripheral equipment
- 3. Electronic musical instruments


■ Package Specifications

Model No.	Package specifications	Diameter of reel	Tape width	
PC401	Taping package (Net: 3 000pcs.)	φ 370mm	12mm	
PC401T	Taping package (Net: 750pcs.)	φ178mm	12mm	
PC401Z	Sleeve package (Net: 100pcs.)	_	_	

Outline Dimensions

OPIC Photocoupler

(Unit: mm)

* "OPIC" (Optical IC) is a trademark of the SHARP Corporation.

An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

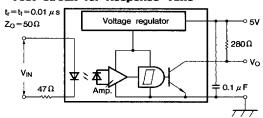
■ Absolute Maximum Ratings

 $(Ta=25^{\circ}C)$

	Parameter	Symbol	Rating	Unit	
Input	Forward current	I_{F}	50	mA	
	Reverse voltage	VR	6	V	
	Power dissipation	P	70	mW	
	Supply voltage	Vcc	16	V	
Output	High level output voltage	Vон	16	V	
	Low level output current	IOL	50	mA	
	Power dissipation	Po	130	mW	
Total power dissipation		P _{tot}	150	mW	
*l Isolation voltage		Viso	3 750	V _{rms}	
Operating temperature		T_{opr}	-25 to +85	$^{\circ}$	
Storage temperature		$T_{ m stg}$	-40 to +125	$^{\circ}$	
*2Soldering temperature		$T_{\rm sol}$	260	°C	

Acofor 1 minute, 40 to 60% RH

-8180798 0011642 050 **■**


Electro-optical Characteristics

 $(Ta=0 \text{ to } +70^{\circ}\text{C} \text{ unless otherwise specified.})$

	Para	meter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage		VF	$I_F = 4mA$	_	1.1	1.4	v
				$I_F = 0.3 \text{mA}$	0.7	1.0	_	
	Reverse current		I_R	$Ta=25$ °C, $V_R=3V$		_	10	μΑ
	Terminal capacitance		Ct	Ta=25°C, $V=0,f=1$ kHz		30	250	pF
Output	Operating supply voltage		V_{CC}		3	_	15	V
	Low level output voltage		V_{OL}	$I_F = 0, V_{CC} = 5V, I_{OL} = 16mA$	_	0.2	0.4	V
	High level output current		Іон	$I_F=4mA,V_{CC}=V_O=15V$	-		100	μΑ
	Low level supply current		Iccl	$I_F=0,V_{\infty}=5V$	_	2.5	5.0	mÅ
	High level supply current		I CCH	$I_F=4\text{mA},V_{CC}=5V$	_	2.7	5.5	mA
Transfer charac- teristics	*3 "H→L" threshold		I _{FHL}	$Ta=25$ °C, $V_{CC}=5V$, $R_L=280$ Ω	0.4	0.8	_	mA
	input current			$V_{CC}=5V,R_L=280\Omega$	0.3	_	-	
	*4 "H→L" threshold		I _{FLH}	$Ta=25^{\circ}C$, $V_{CC}=5V$, $R_L=280 \Omega$		1.1	2.0	mA
	input current			$V_{\rm CC} = 5V$, $R_{\rm L} = 280\Omega$	_	_	4.0	
	*6Hysteresis		$I_{\text{FHL}}/I_{\text{FLH}}$	$V_{CC}=5V,R_L=280\Omega$	0.5	0.7	0.9	
	Isolation resistance		R _{ISO}	Ta=25°C,DC500V,40 to 60%RH	5×10^{10}	1011	_	Ω
	*6Response time	"H→L" propagation delay time	tPHL		_	2	6	
		"L→H" propagation delay time	tplh	$Ta=25$ °C, $V_{CC}=5$ V		1	3	
		Fall time	t _f	$R_L = 280 \Omega$, $I_F = 4mA$	_	0.05	0.5	μs
		Rise time	tr		_	0.1	0.5	

- *3 I_{FHL} represents forward current when output gose from high to low.
- *4 IFLH represents forward current when output goes from low to high.
- *5 Hysteresis stands for I_{FHL}/I_{FLH}.
- *6 Test circuit for response time is shown below.

Test Circuit for Response Time

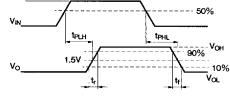


Fig. 1 Forward Current vs. Ambient Temperature

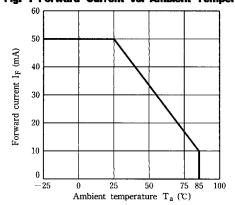


Fig. 2 Power Dissipation vs. Ambient Temperature

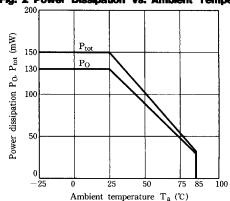


Fig. 3 Forward Current vs. Forward Voltage

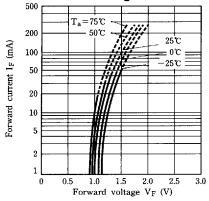


Fig. 5 Relative Threshold Input Current vs.
Ambient Temperature

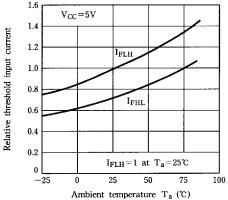


Fig. 7 Low Level Output Voltage vs.
Ambient Temperature

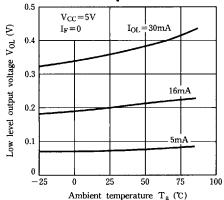


Fig. 4 Relative Threshold Input Current vs. Supply Voltage

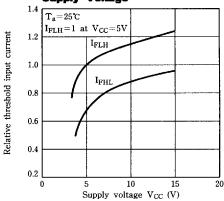


Fig. 6 Low Level Output Voltage vs. Low Level Output Current

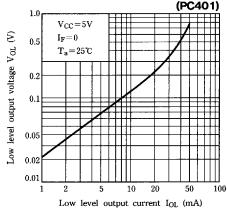


Fig. 8 High Level Output Current vs. Forward Current

Fig. 9 High Level Output Current vs.
Ambient Temperature

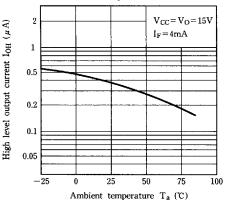


Fig.11 Propagation Delay Time vs. Forward Current

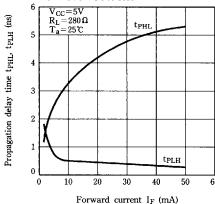


Fig.10 Supply Current vs. Supply Voltage

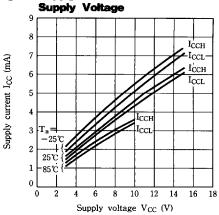
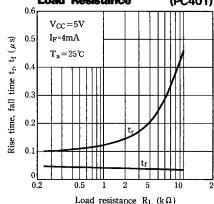



Fig.12 Rise Time, Fall Time vs. Load Resistance (PC401)

Preautions for Use

- (1) It is recommended that a by-pass capacitor of more than $0.01~\mu\mathrm{F}$ is added between V_{∞} and GND near the device in order to stabilize power supply line.
- (2) Handle this product the same as with other integrated circuits against static electricity.
- (3) As for other general cautions, refer to the chapter "Precautions for Use" (Page 78 to 93).