

ADVANCED ANALOG

A Division of intech

A-8400

DESCRIPTION

The A-8400 is a low cost monolithic voltage-to-frequency converter that provides linear conversion of 0 to +10V analog signals to a digital pulse train whose repetition rate is proportional to the analog voltage. This converter is designed to provide accurate and reliable performance, with versatile adjustment free operation at low cost. A wide variety of input voltage scaling and output interfacing can be accomplished to satisfy many data acquisition and signal conditioning applications.

An improved form of the charge balancing technique of conversion is used in the A-8400 to convert analog input voltages of 0 to +10V to an extremely stable, linear output pulse rate of 0 to 100 kHz. When linked to a frequency-to-voltage converter such as the A-8400, connected for F/V operation, an accurate two-wire data link may be formed with the V/F as the transmitter and the F/V as the receiver. The A-8400 may also be linked to a binary counter which can perform approximately 390 8-bit digital conversions per second.

Versatility and convenience of operation are key features of the A-8400. By just adding a minimum of external components, other full scale inputs and outputs may be obtained. These devices are especially suited for applications in data transmission, magnetic tape recording, servo loops and isolating analog from digital.

A maximum nonlinearity of $\pm 0.05\%$ for the A-8400 with a 100 kHz full scale output and $\pm 0.025\%$ with the 10 kHz full scale output, and the versatility offered by the A-8400 makes this low cost V/F/V converter an ideal choice for very accurate data encoding and decoding.

Voltage-to-Frequency-to-Voltage Converter

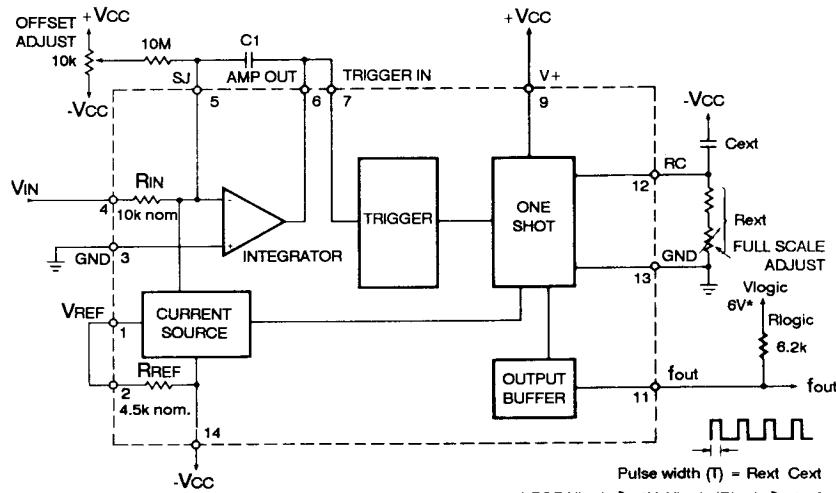
FEATURES

- 0 to +10V conversion to:**
 - 100 kHz, $\pm 0.05\%$ accuracy, max.**
 - 10 kHz, $\pm 0.025\%$ accuracy, max.**
- Excellent linearity over many decades**
- Excellent temperature stability,**
 - $< \pm 50 \text{ ppm}/^{\circ}\text{C}$
- DTL/TTL/CMOS compatible output**
- Small size - monolithic**
- Low cost**

APPLICATIONS

- Remote control or monitoring**
- 2 - Wire digital transmission**
- Telemetry**
- Isolation**
- Servo loops**
- Synchronous speed control**
- Magnetic tape recording**

SPECIFICATIONS


Typical @ +25°C and ±15V supplies unless otherwise noted.

	Min	Typ	Max	Units
TRANSFER CHARACTERISTIC		$f_{out} = \frac{V_{IN}}{10} \text{ 100 kHz}$		
ACCURACY ⁶ Resolution Linearity, FS 10kHz bandwidth 100kHz bandwidth		5	±0.025 ±0.05	decades % %
Monotonic Scale Factor ¹ Offset ¹	-0, +20	inherent	±10	% mV
STABILITY ⁶ Scale Factor vs. Temperature @10kHz vs. Power Supply vs. Time/Day vs. Time/Month Offset vs. Temperature vs. Power Supply vs. Time/Day vs. Time/Month		±50 ±300 ±100 ±200 ±3 ±100 ±15 ±30	±100 10	ppm/°C ppm/% ppm ppm ppm/°C µV/% ppm ppm
RESPONSE - V/F Mode Settling Time, to 0.01%, FS step Overload Recovery		10	2	cycles ⁵ ms
RESPONSE - F/V Mode	Depends on C _{INT} /R _{IN} time constant			
ANALOG INPUT (V/F)/OUTPUT (F/V) Voltage Range ² Current Range Overrange Configuration Impedance (voltage input) Overvoltage Protection (V _{IN})	0 to +10 0 to +1 Depends on external RC time constant Single-ended, referred to analog ground 10 ±VS			V mA kΩ nom.
OUTPUT (V/F)/INPUT (F/V) Frequency Range ² Overrange Waveform ³ Fan Out ⁴ (V/F Mode) Short Circuit Protection	0 to 100 Depends on external RC time constant Compatible with DTL/TTL/CMOS ⁷ 1 Indefinite to GND			kHz TTL Load
TEMPERATURE Rated - Commercial Extended - ET1 Operating - Commercial Extended - ET1 Storage	0 -55 -25 -55 -55		+70 +85 +85 +85 +125	°C °C °C °C °C
POWER SUPPLY Voltage - Rated - Operate Current	±12	±15 ±15@±15	±18	V V mA@V

Notes:

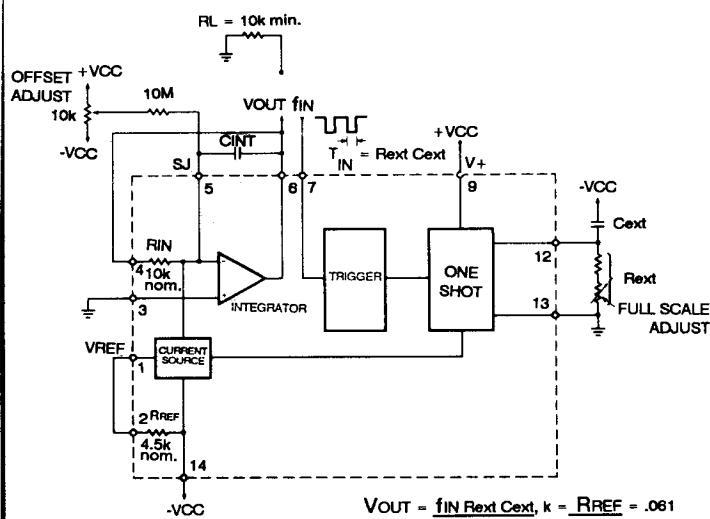
1. Adjustable to zero error.
2. Adjustable to other full scale input/output levels.
3. Output level determined by external pullup resistor.
4. One TTL load unit is = -1.6mA at LO (+0.4V) and +40µA at HI (+2.4V.)
5. Of final frequency.
6. Applies to V/F & F/V modes.
7. Maximum output (V/F) = 6V.

BLOCK DIAGRAM

NOTE: All resistor values are typical and in ohms.

$$\text{Pulse width (T)} = \text{Rext Cext}$$

* FOR Vlogic \geq 6V, Vlogic/Rlogic \geq 1mA


FULL SCALE	C1	Cext	Rext
10kHz	0.02	2700pF	22.7k
100kHz	0.002	220pF	27.8k

V/F Mode

OPERATION

V/F Mode

The analog input forces a current to flow through R_{IN} into C₁ causing the output of the integrator to move in a negative direction - refer to Block Diagram - V/F Mode. At a given voltage level, the comparator circuit triggers the timing reference network to turn the controlled current source on so that it discharges C₁. As the capacitor discharges, the output of the integrator moves in a positive direction. When the timing reference has finished discharging the capacitor, the output of the integrator is positive and ready to start the process again for the next cycle. For current inputs into the summing junction (pin 5,) it is recommended for good temperature stability that an external R_{REF} be used between pin 1 and -VCC.

NOTE: All resistor values are typical and in ohms.

* @ RIPPLE = 200mV p-p

FULL SCALE	CINT	Cext	Rext
10kHz	0.5μF*	2700pF	22.7k
100kHz	0.05μF*	220pF	27.8k

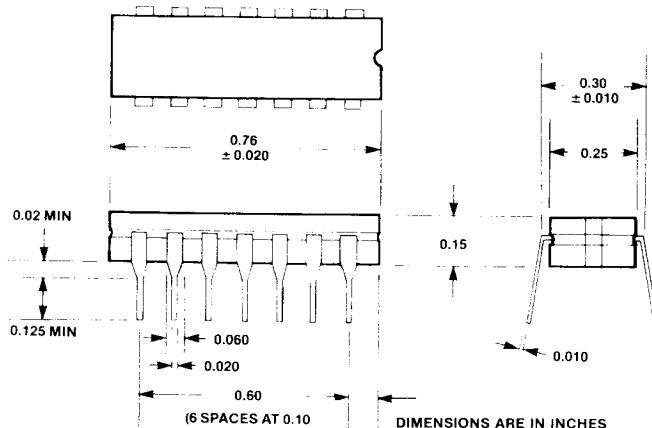
F/V Mode

F/V Mode

As a frequency-to-voltage converter, the A-8400 accepts negative going TTL pulses into the trigger circuit which starts the one shot cycle (period = T = R_{ext} C_{ext}). Refer to Block Diagram - F/V Mode.

The current source forces current out of the summing junction for the one shot period. The amplifier acts as a current-to-voltage integrator providing a voltage output proportional to the average current (also proportional to the input frequency.) F/V linearity will be the same as in the V/F mode. Output ripple is controlled by the integrating capacitor (C_{int} - refer to Block Diagram - F/V Mode.)

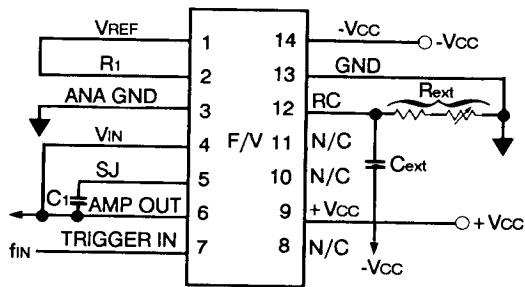
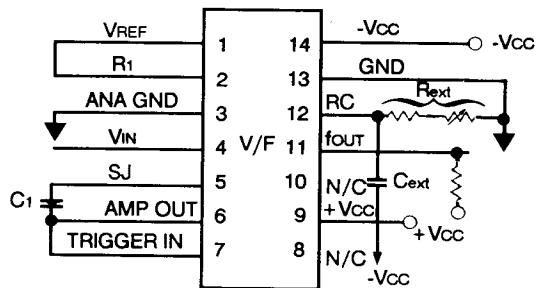
PIN DESIGNATIONS


Pin 1	V _{REF}	Pin 14	-V _{CC}
Pin 2	R ₁	Pin 13	GND
Pin 3	ANA GND	Pin 12	R _C
Pin 4	V _{IN}	Pin 11	f _{OUT}
Pin 5	SJ	Pin 10	N/C
Pin 6	AMP OUT	Pin 9	+V _{CC}
Pin 7	TRIGGER IN	Pin 8	N/C

V/F Mode

Pin 1	V _{REF}	Pin 14	-V _{CC}
Pin 2	R ₁	Pin 13	GND
Pin 3	ANA GND	Pin 12	R _C
Pin 4	V _{IN}	Pin 11	N/C
Pin 5	SJ	Pin 10	N/C
Pin 6	AMP OUT	Pin 9	+V _{CC}
Pin 7	TRIGGER IN	Pin 8	N/C

F/V Mode



MECHANICAL OUTLINE

14 pin DIP

A plastic or a ceramic package will be used to fulfill an order depending on availability.

PIN CONNECTION

Top View

©Advanced Analog

The information in this data sheet has been carefully checked and is believed to be accurate, however, no responsibility is assumed for possible errors. The specifications are subject to change without notice.

2-8802

ADVANCED ANALOG
A Division of **intech**

MIL-STD-1772
Certified
2270 MARTIN AVENUE, SANTA CLARA, CALIFORNIA 95050-2781
TELEPHONE (408) 988-4930 TWX 910-338-2213