WWW.DZS

Z90251 OTP Z90255 ROM

32 KB TELEVISION CONTROLLER WITH OSD

PRODUCT SPECIFICATION

PS001300-TVC1099

Document Disclaimer

© 1999 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses or other rights are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Table of Contents

1	OVEF	RVIEW	9
	1.1	Pin Assignment and Description	13
	1.2	Single-Purpose Pin Descriptions	15
	1.3	Multiplexed Pin Descriptions	17
2	MEM	ORY DESCRIPTION	19
	2.1	Standard Register File	19
	2.2	Expanded Register File	19
	2.3	Program Memory	19
3	ON-S	CREEN DISPLAY	23
	3.1	OSD Position	23
	3.2	Second Color Feature	27
	3.3	Mesh and Halftone Effect	29
	3.4	OSD Fade	34
	3.5	Inter-Row Spacing	
	3.6	Character Generation	
	3.7	Character Size and Smoothing Effect	
	3.8	Fringing Effect	
	3.9	Display Attribute Control	
	3.10	3	
4		55 I2C MASTER INTERFACE	
	4.1	Controlling the I ² C Interface	56
5	INPU	T/OUTPUT PORTS	58
6	INFR	ARED INTERFACE	67
7	PULS	E WIDTH MODULATORS	71
	7.1	PWM Mode Register	71
	7.2	PWM1 through PWM11	
	7.3	Digital/Analog Conversion with PWM	81
8	ANAL	LOG - TO -DIGITAL CONVERTER	82
9	ELEC	TRICAL CHARACTERISTICS	85
	9.1	Absolute Maximum Ratings	85
	9.2	DC Characteristics	86

Z90255 ROM and Z90251 OTP 32 KB Television Controller with OSD

	9.3	AC Characteristics	87
	9.4	Timing Diagram	88
10	PACK	AGING	89
11	Order	ing Information	90
12	ROM	Code Submission	90
13	Custo	mer Feedback Form	91

List of Figures

igure 1	Code Development Environment	. 9
Figure 2	Z90255-Based TV System Application	10
Figure 3	Z90255 Block Diagram	11
Figure 4	Z90255 and Z90251 Pin Assignments	13
Figure 5	Register File Map	20
Figure 6	Program Memory Map	22
Figure 7	Positive and Negative Sync Signals	24
Figure 8	Second Color Display	29
Figure 9	Mesh On	30
Figure 10	Video Fade (Example)	35
Figure 11	Character Pixel map in CGROM	38
Figure 12	Example of a Multiple Character Icon	39
Figure 13	Smoothing Effect on 2X Character Size	40
Figure 14	VRAM Data Path for 512 Character Set	43
Figure 15	H _{SYNC} and V _{SYNC} Specification	53
Figure 16	Bidirectional Port Pin Pad Multiplexed with I2C Port	54
Figure 17	Pulse Width Modulator Timing Diagram, 6 Bit	73
igure 18	Pulse Width Modulator Timing Diagram, 14-Bit	74
igure 19	Analog Signals Generated from PWM Signals	81
igure 20	ADC Block Diagram	84
Figure 21	Timing Requirements of External Inputs	88
igure 22	42-Lead Shrink Dual-in-line Package (SDIP)	89

List of Tables

Table 1	Z90255 Production Device Pin Assignment	14
Table 2	Single-Purpose Pin Descriptions	15
Table 3	Multiplexed Pin Descriptions	17
Table 4	Register File Map	21
Table 5	OSD Control Register 00H:Bank A (OSD_CNTL)	23
Table 6	Vertical Position Register 01H:Bank A (VERT_POS)	25
Table 7	Horizontal Position Register 02H:Bank A (HOR_POS)	26
Table 8	Second Color Control Register 07H:Bank A (SNDCLR_CNTRL) \dots	27
Table 9	Second Color Register 08H:Bank A (SNDCLR)	28
Table 10	Mesh Column Start Register 04H: Bank F (MC_St)	30
Table 11	Mesh Column End Register 05H: Bank F (MC_End)	31
Table 12	Mesh Row Enable Register 06H: Bank F (MR_En)	31
Table 13	Mesh Control Register 07H: Bank F (MC_Reg)	32
Table 14	BGR Mesh Colors	
Table 15	Fade Position Register 1 05H: Bank A (FADE_POS1)	36
Table 16	Fade Position Register 2 06H: Bank A (FADE_POS2)	36
Table 17	Row Space Register 04H: BankA (ROW_SPACE)	37
Table 18	RGB Colors	41
Table 19	Display Attribute Register 03H: Bank A (DISP_ATTR)	42
Table 20	VRAM Structure and Memory Map	44
Table 21	Color Palette Selection Bits	
Table 22	Color Index Register 09H: Bank C (CLR_IDX)	46
Table 23	Color Palette 0 Register 09H: Bank A (CLR_P0)	47
Table 24	Color Palette 1 Register 0AH: Bank A (CLR_P1)	47
Table 25	Color Palette 2 Register 0BH: Bank A (CLR_P2)	48
Table 26	Color Palette 3 Register 0CH: Bank A (CLR_P3)	48
Table 27	Color Palette 4 Register 0DH: Bank A (CLR_P4)	49
Table 28	Color Palette 5 Register 0EH: Bank A (CLR_P5)	49
Table 29	Color Palette 6 Register 0FH: Bank A (CLR_P6)	49
Table 30	Row Attribute Register (ROW_ATTR)	50
Table 31	HV Interrupt Status Register 07H: Bank C (INT_ST)	
Table 32	Master I ² C Control Register 0CH: Bank C (I ² C_CNTL)	55
Table 33	Master I ² C Command Register 0BH: Bank C (I ² C_CMD)	
Table 34	Master I ² C Data Register 0AH: Bank C (I ² C_DATA)	
Table 35	Master I ² C Bus Interface Commands	57

PS001200-TVC1000 Proliminary

Z90255 ROM and Z90251 OTP 32 KB Television Controller with OSD

Table 36	Port configuration Register 00H: Bank F (PCON)	58
Table 37	Port 2 Mode Register F6H: P2M	59
Table 38	Port 2 Data Register 02H: P2	59
Table 39	Port 4 Pin-Out Selection Register 08H: Bank C (PIN_SLT)	60
Table 40	Port 4 Data Register 05H: Bank C (PRT4_DTA)	61
Table 41	Port 4 Direction Control Register 06H: Bank C (PRT4_DRT)	62
Table 42	PWM Mode Register 0DH: Bank B (P_MODE)	63
Table 43	Port 5 Data Register CH: Bank B (PRT5_DTA)	63
Table 44	Port 5 Direction Control Register 0EH: Bank B (PRT5_DRT)	64
Table 45	Port 6 Data Register 03H: Bank F (PRT6_DTA)	65
Table 46	Port 6 Direction Control Register 02H: Bank F (PRT6_DRT)	66
Table 47	Timer Control Register 0 01H: Bank C (TCR0)	67
Table 48	Timer Control Register 1 02H: Bank C (TCR1)	68
Table 49	IR Capture Register 0 03H: Bank C (IR_CP0)	69
Table 50	IR Capture Register 1 04H: Bank C (IR_CP1)	70
Table 51	PWM Mode Register 0DH: Bank B (P_MODE)	71
Table 52	Port 4 Pin-Out Selection Register 08H: Bank C (PIN_SLT)	72
Table 53	PWM 1 Data Register 02H: Bank B (PWM1)	75
Table 54	PWM 2 Data Register 03H: Bank B (PWM2)	75
Table 55	PWM 3 Data Register 04H: Bank B (PWM3)	75
Table 56	PWM 4 Data Register 05H:Bank B (PWM4)	76
Table 57	PWM 5 Data Register 06H: Bank B (PWM5)	76
Table 58	PWM 6 (6-bit)Data Register 07H: Bank B (PWM6)	77
Table 59	PWM 7 Data Register 08H: Bank B (PWM7)	77
Table 60	PWM 8 Data Register 09H: Bank B (PWM8)	77
Table 61	PWM 9 Data Register 0AH: Bank B (PWM9)	78
Table 62	PWM 10 Data Register 0BH: Bank B (PWM10)	78
Table 63	PWM 6 (14-bit) High Data Register 08H: Bank F (PWM6H)	79
Table 64	PWM 6 (14-bit) Low Data Register 09H: Bank F (PWM6L)	79
Table 65	PWM 11 High Data Register 00H: Bank B (PWM11H)	79
Table 66	PWM 11 Low Data Register 01H: Bank B (PWM11L)	80
Table 67	3-Bit ADC Data Register 00H: Bank C (3ADC_DTA)	83
Table 68	4-Bit ADC Data Register 01H: Bank F (4ADC_DTA)	83
Table 69	Operational Limits	85
Table 70	DC Characteristics	86
Table 71	AC Characteristics	87
Table 72	Package Dimensions	89

Z90255 ROM and Z90251 OTP 32 KB Television Controller with On-Screen Display

1 OVERVIEW

The Z90255 and Z90251 are the ROM and OTP versions of a Television Controller with On-Screen Display (OSD) that contains 32 KB of program memory.

 The Z90251 is the one-time programmable (OTP) controller used to develop code or prototypes for specific television applications or initial limited production.
 Program ROM and Character Generation ROM (CGROM) in the Z90251 are both programmable.

The Z90251 requires Zilog's Z90259ZEM Emulator with its proprietary Zilog Developmental Studio (ZDS) software for programing. To view how code is working, the emulator uses a ZOSD board which connects directly to a television screen. Refer to Figure 1.

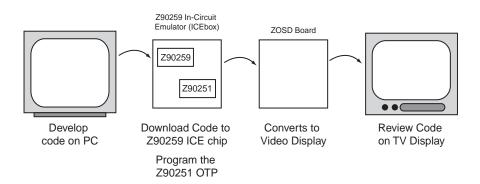


Figure 1 Code Development Environment

• The **Z90255** incorporates the ROM code developed by the customer with the Z90251. Customer code is masked into both program ROM and CGROM.

An application-specific controller designed to provide complete audio and video control of television receivers and video recorders, the Z90255 provides advanced OSD features. Figure 2 illustrates a typical TV system application using the Z90255. Figure 3 is a block diagram of the Z90255 architecture.

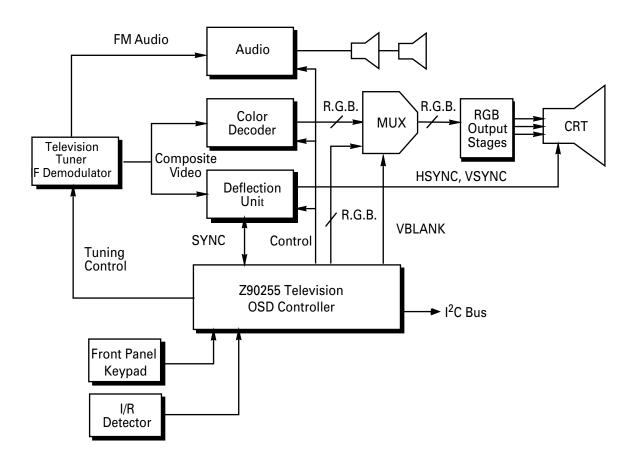


Figure 2 Z90255-Based TV System Application

PS001200_TV/C1099 Proliminary 10

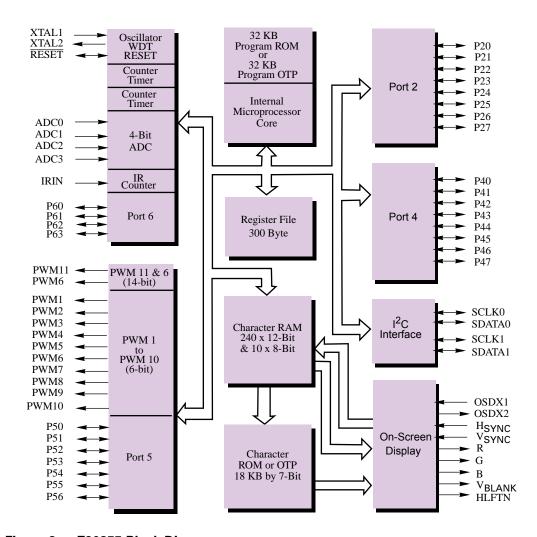


Figure 3 Z90255 Block Diagram

Note: PWM 6 can be either a 6-bit or 14-bit output.

The Z90255 takes full advantage of Zilog's Z8 expanded register file space to offer greater flexibility in creating a user-friendly On-Screen Display (OSD).

Three basic addressing spaces are available: Program memory, Video RAM (VRAM) and the Register file. The register file is composed of 300 bytes of general-purpose registers, 16 control and status registers, one I/O port register and three reserved registers.

The OSD module supports 10 rows by 24 columns of characters. Each character color can be specified. There are eight foreground colors and eight background colors. When the foreground and background colors are the same, the background is transparent.

Z90255 ROM and Z90251 OTP 32 KB Television Controller with OSD

If Row, Second color and Character set are defined, an analog bar line can be displayed for volume control, signal levels, and tuning.

The OSD can display four character sizes:

- 1X (14 x 18 pixels)
- 2X (28 x 36 pixels)
- Double width (28 x 18 pixels)
- Double height (14 x36 pixels)

Inter-row spacing can be programmed within 0 to 15 Horizontal scan lines. Using multiple characters with zero inter-row spacing allows the creation of large psuedo icons.

A 14-bit Pulse Width Modulator (PWM) port provides necessary voltage resolution for a voltage synthesizer tuning system. Ten 6-bit PWM ports are used to control audio (base, treble, balance and volume) and video (contrast, brightness, color, tint and sharpness) signal levels.

There are 27 I/O pins grouped into four ports. These I/O pins can be configured through software to provide timing, status signals, serial and parallel input and output.

For real-time events, such as counting, timing and data communication, two on-chip counter/timers are implemented. The Z90255 is packaged in a 42-pin SDIP and provides an ideal, reliable solution for high-volume consumer television applications.

1.1 Pin Assignment and Description

Figure 4 shows the pin numbers for production and OTP device format.

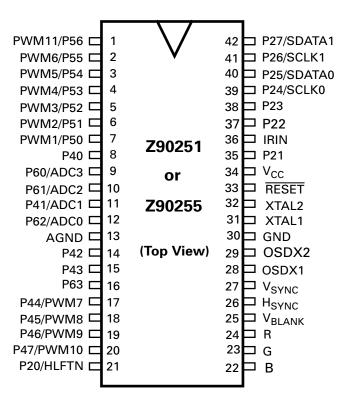


Figure 4 Z90255 and Z90251 Pin Assignments

Note:

- 1. The pins on the Z90255 and Z90251 are assigned to perform the functions identified in Tables 1,2 and 3.
- 2. PWM 6 can be either 6-bit or 14-bit PWM outputs.
- 3. All signals with an overbar are active Low.

PS001200_TV/C1099 Proliminary 13

Table 1 Z90255 Production Device Pin Assignment

Name	Pin Function	Package 42-Pin SDIP	Direction	POR
V _{cc}	+5 Volts	34	Power	Power
GND, AGND	0 Volts	30, 13	Power	Power
IRIN	Infrared Remote Capture Input	36	I	I
PWM11	14-bit Pulse Width Modulator Output	1	0	N/A
PWM10-PWM1 ¹	6-Bit Pulse Width Modulator Output	20, 19, 18, 17, 2, 3, 4, 5, 6, 7	0	N/A
P5 (6-0)	Bit Programmable I/O Ports	1, 2, 3, 4, 5, 6, 7	I/O	I
P2 (7-0)	Bit-Programmable I/O Ports	42, 41, 40, 39, 38, 37, 35, 21	I/O	I
HLFTN	Halftone Output	21	0	N/A
SDATA0, SDATA1	I ² C Data, Bidirectional (Send/ Receive) Serial Data Lines	40, 42 ²	I/O	N/A
SCLK0, SCLK1	I ² C Clock	39, 41 ²	I/O	N/A
P6 (3-0)	Bit-Programmable I/O Ports	16, 12, 10, 9	I/O	I
P4 (7-0)	Bit-Programmable I/O Ports	20, 19, 18, 17, 15, 14, 11, 8	I/O	I
XTAL1	Crystal Oscillator Input	31	I	I
XTAL2	Crystal Oscillator Output	32	0	0
OSDX1	Dot-Clock Oscillator Input	28	I	I
OSDX2	Dot-Clock Oscillator Output	29	0	0
H _{SYNC}	Horizontal Synchronization	26	I	I
V _{SYNC}	Vertical Synchronization	27	I	I
VBLANK	Video Blanking	25	0	0
R,G,B	Video Red, Green, Blue	24, 23, 22	0	0
ADC3-ADC0	4-Bit Analog-to-Digital Converter Input	9, 10, 11, 12 Al		I
RESET	Device Reset	33	I/O	I

Note:

- 1. PWM 6 can be either 6-bit or 14-bit PWM outputs.
- 2. When Pins 39-42 are configured for I^2C , pins 39 and 40 comprise one channel, and pins 41 and 42 comprise another channel

DC004200 TVC4000

1.2 Single-Purpose Pin Descriptions

Table 2 lists the single-purpose pin acronyms, pin names, and descriptions.

 Table 2
 Single-Purpose Pin Descriptions

Acronym	Pin Name(s)	Description
AGND	Analog Ground	Analog Ground
В	Blue	CMOS output of the blue video signal B. Video blue can be programmed for either polarity.
G	Green	CMOS output of the green video signal G. Video green can be programmed for either polarity.
GND	Ground	Ground
H _{SYNC}	Horizontal Sync	Input pin for external horizontal synchronization signal
IRIN	IR Capture Input	Infrared Remote capture input
OSDX1, OSDX2	On-Screen Display Dot Clock Oscillators	These oscillator input and output pins for on-screen display circuits are connected to an inductor and two capacitors to generate the character dot clock. The dot clock frequency determines the character pixel width and phase synchronized to HSYNC
P21, P22, P23	Port 2 bits 1 - 3	Bidirectional digital port, configured to read digital data or to send output to an attached device.
P40, P42, P43	Port 4 bit 0, bits 2 and 3	Bidirectional digital port, configured to read digital data or to send output to an attached device.
P63	Port 6 bit 3	P63 input can be read directly at 03H. A negative edge event is latched to IRQ3. An IRQ3-vectored interrupt occurs if appropriately enabled. A typical application places the device in Stop mode when P63 goes Low (IRQ3 interrupt routine). When P63 subsequently goes High, a Stop-Mode Recovery is initiated.
R	Red	CMOS output of the red video signal R. Video red can be programmed for either polarity.
RESET	System Reset	System reset

 Table 2
 Single-Purpose Pin Descriptions

Acronym	Pin Name(s)	Description
V _{BLANK}	Video Blank	CMOS output, programmable polarity. This pin is used as a super-impose control port to display characters from video RAM. The signal controls Y-signal output of CRTs and turns off the incoming video display while the characters in video RAM are super-imposed on the screen. The output ports of color data directly drive three electron guns on the CRT; at the same time VBLANK output turns off the Y signal.
V _{CC}	Power Supply	Power supply
V _{SYNC}	Vertical Sync	Input pin for external vertical synchronization signal.
XTAL1, XTAL2	Time-Based Input Output	These pins connect to the internal parallel-resonant clock crystal oscillator circuit with two capacitors to GND. XTAL1 can be used as an external clock input.

1.3 Multiplexed Pin Descriptions

Table 3 lists the Multiplexed Pin acronyms, pin names, and descriptions.

Table 3 Multiplexed Pin Descriptions

Acronym	Pin Name(s)	Description
P20/HLFTN	Port 2 bit 0 or Halftone Output	Port 2 bit 0 can be programmed as an input or output line.
P24/SCLK0	Port 2 bit 4 or I ² C Clock	Port 2 bit 4 or I ² C Clock
P25/SDATA0	Port 2 bit 5 or I ² C Data	Port 2 bit 5 or I ² C Data
P26/SCLK1 P27/SDATA1	Port 2 bit 6 or I ² C Clock Port 2 bit 7 or I ² C Data	Port 2 bit 6 or I ² C Clock Port 2 bit 7 or I ² C Data
P62/ADC0	Port 6 bit 2 or Analog-to-Digital Converter Channel 0	P62 can be read directly. A negative edge event is latched into IRQ2 to initiate an IRQ2-vectored interrupt if appropriately enabled.
P60/ADC3	Port 6 bit 0 or Analog-to-Digital Converter Channel 3	Port 6 bit 0 can be programmed as an input or output line.
P61/ADC2	Port 6 bit 1 or Analog-to-Digital Converter Channel 2	Port 6 bit 1 can be programmed as an input or output line.
P41/ADC1	Port 4 bit 1 or Analog-to-Digital Converter Channel 1	Port 4 bit1 can be programmed as an input or output line.
P44/PWM7	Port 4 bit 4 or Pulse Width Modulator 7	These port pins can be programmed as input or output ports. Each PWM channel has 6-bit resolution.
P45/PWM8	Port 4 bit 5 or Pulse Width Modulator 8	
P46/PWM9	Port 4 bit 6 or Pulse Width Modulator 9	
P47/PWM10	Port 4 bit 7 or Pulse Width Modulator 10	
PWM11/P56	Pulse Width Modulator 11 or Port 5 bit 6	The PWM signal-generator channel has 14-bit resolution. Port 5 bit 6 and port 5 bit 5 can be programmed as inputs or outputs.
PWM6/P55	Pulse Width Modulator 6 or Port 5 bit 5	programmed do mpato or outputo.

Table 3 Multiplexed Pin Descriptions (Continued)

Acronym	Pin Name(s)	Description
PWM6/P55	Pulse Width Modulator 6 or Port 5 bit 5	These port pins can be programmed as input or output ports. Each PWM signal-generator channel has 6-bit resolution.
PWM5/P54	Pulse Width Modulator 5 or Port 5 bit 4	
PWM4/P53	Pulse Width Modulator 4 or Port 5 bit 3	
PWM3/P52	Pulse Width Modulator 3 or Port 5 bit 2	
PWM2/P51	Pulse Width Modulator 2 or Port 5 bit 1	The PWM signal-generator channel has 6-bit resolution. Port 5 bit 1 and Port 5 bit 0 can be programmed as an input or output port.
PWM1/P50	Pulse Width Modulator 1 or Port 5 bit 0	The PWM signal-generator channel has 6-bit resolution. Port 5 bit 0 can be programmed as an input or output port.

Note: PWM6 can be either 6-bit or 14-bit output.

2 MEMORY DESCRIPTION

A total of 300 bytes of general purpose register memory is implemented in the Z90255. These registers are composed of 236 registers from the standard register file and 64 registers from the expanded register file.

2.1 Standard Register File

The Z90255 Standard Register File consists of two I/O port registers (02h and 03h), 236 general purpose registers (04h-EFh) and 15 (F1h-FFh) control and status registers. Registers 00h, 01h, and F0h are reserved. Figure 5 is the register file map. Instructions can access registers directly or indirectly with an 8-bit address field. This also allows short 4-bit addressing using the Register Pointer. In the 4-bit mode, the register file is divided into sixteen working register groups. The upper nibble of the Register Pointer (FDh) addresses the starting location of the active working-register group.

Note: Registers E0h-EFh are only accessed through a working-register and indirect addressing mode.

2.2 Expanded Register File

The register file has been expanded to provide additional system control registers, additional general purpose registers, and expanded mapping of peripheral devices and I/O ports in the register address area.

The lower nibble of the Register Pointer (FDh) addresses the Expanded Register File (ERF) Bank. The 0h value in the lower nibble identifies the Standard Register File to be addressed. Any other value from 1h to Fh selects an ERF Bank. When an ERF Bank is selected, register addresses from 00h to 0Fh access the sixteen ERF Bank registers, which in effect replace the first sixteen locations of the Z90255 Standard Register File. Only ERF Bank 4, ERF Bank 5, ERF Bank 6, ERF Bank 7, ERF Bank A, ERF Bank B, ERF Bank C and ERF Bank F are implemented in the Z90255 controller (Table 4).

2.3 Program Memory

The Z90255 has 32KB of program memory. Refer to Figure 6. The first 12 bytes of the program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to interrupt and program control routine addresses which are passed to the specified vector address. The IRQ0 vector is permanently assigned to the IR interrupt request. The IRQ1 vector is permanently assigned to the V_{SYNC} and H_{SYNC} interrupt request. Program memory starts at address 000Ch after being reset.

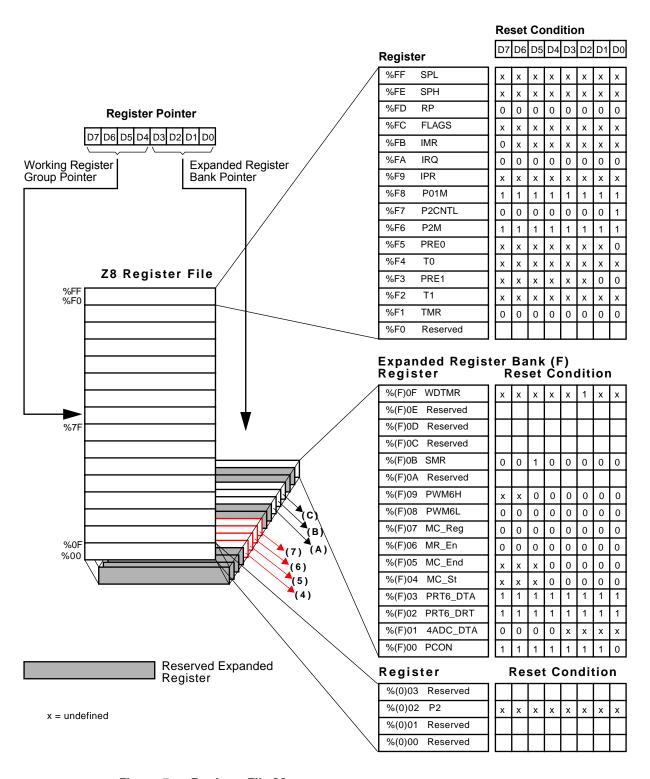


Figure 5 Register File Map

Table 4 Register File Map

BANK 4	BANK 5	BANK 6	BANK 7	
Address Description	Address Description	Address Description	Address Description	
00h-0Fh Gen. Pur. Reg.				

	-				
	BANK A		BANK B		
Addres	s Description	Address	Description		
00h	OSD Control Register(OSD_CNTL)	00h	PWM11-High Data Register(PWM11H)		
01h	Vertical Position Register(VERT_POS)	01h	PWM11-Low Data Register(PWM11L)		
02h	Horizontal Position Register(HOR_POS)	02h	PWM1 Data Register(PWM1)		
03h	Display Attribute Register(DISP_ATTR)	03h	PWM2 Data Register(PWM2)		
04h	Row Space Register (ROW_SPACE)	04h	PWM3 Data Register(PWM3)		
05h	Fade Position1 Register(FADE_POS1)	05h	PWM4 Data Register(PWM4)		
06h	Fade Position2 Regisiter(FADE_POS2)	06h	PWM5 Data Register(PWM5)		
07h	Second Color Control Register(SNDCLR_CNTRL)	07h	PWM6(6-bit) Data Register(PWM6_6)		
08h	Second Color Position Register(SNDCLR_POS)	08h	PWM7 Data Register(PWM7)		
09h	Color Palette0 Register(CLR_P0)	09h	PWM8 Data Register(PWM8)		
0Ah	Color Palette1 Register(CLR_P1)	0Ah	PWM9 Data Register(PWM9)		
0Bh	Color Palette2 Register(CLR_P2)	0Bh	PWM10 Data Register(PWM10)		
0Ch	Color Palette3 Register(CLR_P3)	0Ch	Port 5 Data Register(PRT5_DTA)		
0Dh	Color Palette4 Register(CLR_P4)	0Dh	PWM Mode Register(P_MODE)		
0Eh	Color Palette5 Register(CLR_P5)	0Eh	Port 5 Direction Register(PRT5_DRT)		
0Fh	Color Palette6 Register(CLR_P6)	0Fh			
	BANK C		BANK F		
Address	s Description	Address	Description		
00h	3-bit ADC Data Register(3ADC_DTA)	00h	Port Configuration Register(PCON)		
01h	Timer Control Register0(TCR0)	01h	4-bit ADC Data Register (4ADC_DTA)		
02h	Timer Control Register1(TCR1)	02h	Port6 Direction Register(PRT6_DRT)		
03h	IR Capture Register0(IR_CP0)	03h	Port6 Data Register (PRT6_DTA)		
04h	IR Capture Register1(IR_CP1)	04h	Mesh Column Start Register(MC_ST)		
05h	Port4 Data Register(PRT4_DTA)	05h	Mesh Column End Register(MC_END)		
06h	Port4 Direction Register(PRT4_DRT)	06h	Mesh Row Enable Register(MR_EN)		
07h	Interrupt Status Register(INT_ST)	07h	Mesh Control Register(MC_REG)		
08h	Port4 Pin_out Selection Register(PIN_SLT)	08h	PWM6 High Data Register(PWM6H_14)		
09h	Color Index Register(CLR_IDX)	09h	PWM6 Low Data Register (PWM6L_14)		
0Ah	I2C Data Register(I ² C_DATA)	0Ah			
0Bh	I2C Command Register(I ² C_CMD)	0Bh	Stop Mode Register(SMR)		
0Ch	I2C Control Register(I ² C_CNTL)	0Ch			
0Dh		0Dh			
0Eh		0Eh			
		0Fh	WDT Mode Register(WDTMR)		

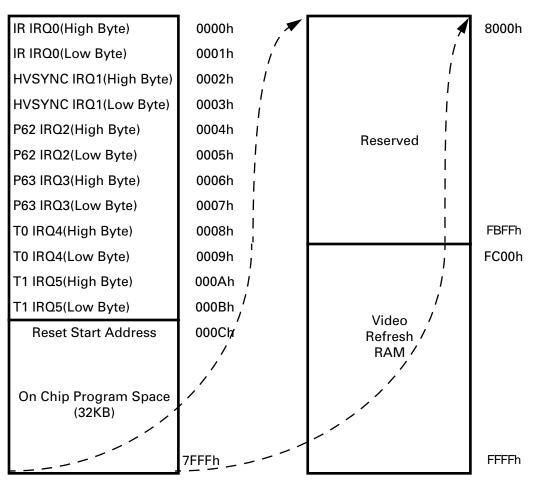


Figure 6 Program Memory Map

3 ON-SCREEN DISPLAY

The On-Screen Display (OSD) module generates and displays a 10 row by 24 columns of 512 characters at 14 x 18-dots resolution. The color of each character can be specified independently.

The televison OSD controller uses H_{SYNC} and V_{SYNC} signals to synchronize its internal circuitry to the video signal, then outputs RGB and Video Blank (VBLANK) signals. The VBLANK signal is used to multiplex the OSD signal and video signal onto the screen. The result is that the On-Screen Display is superimposed over the TV picture.

The display results from the successful timing of several components:

- OSD Positioning
- Second Color Feature
- Mesh and Halftone Effect
- OSD Fade
- Inter-Row Spacing
- Character Generation

3.1 OSD Position

OSD Positioning is controlled by programming the following registers:

- OSD Control Register (Table 5)
- Vertical Position Register (Table 6)
- Horizontal Position Register (Table 7)

OSD Control Register

Table 5 OSD Control Register 00h:Bank A (OSD_CNTL)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	x	х	х	х	х	х	х

Note: R = Read W = Write X = Indeterminate

Bit/	Bit			
Field	Position	R/W	Value	Description
OSD Blank	7	R/W	0	Enable OSD - POR default
			1	Disable OSD
VRAM Mode	6, 5	R/W	00	Select 10-row buffer mode
			01	Reserved
			10	Select 2-row buffer mode
			11	Reserved
Sync Polarity	4	R/W	0	Positive
			1	Negative
Character Size	3	R/W	0	1X
			1	2X
Vertical Retrace Blanking	2, 1, 0	R/W		Retrace Blanking

Bit 4, Sync Polarity, provides the polarity of the H_{SYNC} and V_{SYNC} signals. H_{SYNC} and V_{SYNC} must have the same polarity (see Figure 7). This feature is designed to provide flexibility for TV chassis designers.

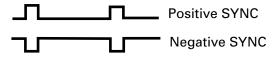


Figure 7 Positive and Negative Sync Signals

Bit 3, Character Size, sets the size of the characters that are displayed. Character sizes 1X, 2X, double width and double height are supported. The default value is 1X.

To change the size of the characters in a row, alter the value of the bit during the previous horizontal interrupt. The character size of the first row is programmed during vertical interrupt (V_{SYNC}) processing. Character size is a row attribute.

Bits 2, 1, and 0, Vertical Retrace Blanking, set a time period when the OSD is disabled while the electron gun returns from the bottom to the top of the screen, and all VBLANK and RGB output are disabled. The blanking period is determined by counting horizontal pulses according to the following formula:

Blanking $Period=(4 \times (Vertical Retrace Blanking)+2) \times THL$ THL: one horizontal period

The retrace blanking bits, OSD_CNTL (2,1,0) must be set to deactivate the electron guns during the retrace period.

Vertical Position Register

The Vertical Position Register (Table 6) sets the vertical placement of the OSD on the screen. The unit of measure for placement is the number of scan lines from the top of the TV field.

Table 6 Vertical Position Register 01h:Bank A (VERT_POS)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
reserved	7	R	0	Return 0
		W	1	No effect
Character double height	6	R/W	0	Normal when bit 3 of OSD_CNTL is 0. 2X when bit 3 of OSD_CNTL is 1.
			1	Double height when bit 3 of OSD_CNTL is 0. Double width when bit 3 of OSD_CNTL is 1.
Vertical Position	5,4,3,2,1,0	R/W		Vertical position control

The value required for this register can be computed using the following equation:

$$VERT_POS = (V_{POS} - 6) / 4$$

VERT_POS represents the contents of bits 5,4,3,2,1,0 of the Vertical Position Register (VERT_POS). The default value is 0. When the value is 0, the OSD is at the top-most OSD position on the screen, with an offset of 06h scan lines above the OSD area.

VERT_POS is the number of scan lines from the V_{SYNC} to the OSD start position. V_{POS} must be a positive integer with a minimum value of Ah incrementing by 4.

Horizontal Position Register

The Horizontal Position Register sets the horizontal start position of the OSD (Table 7). The unit of measure for placement is the number of pixels from the left of the display screen.

Table 7 Horizontal Position Register 02h:Bank A (HOR_POS)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	0	0	0	0	1	1

Note: R = Read W = Write X = Indeterminate

Register Field	Bit Position	R/W	Data	Description
Progressive mode	7	R/W	0 1	Normal Support progressive sync inputs
Reserved	-6	R W		Return 1 No effect
Horizontal position	5,4,3,2,1,0	R/W		Horizontal position control

Note: When working with Progressive mode, fringing does not work with 2X mode or double height mode, nor does Mesh work the same way as in Interlace mode.

The value required for this register can be computed using the following equation:

$$HOR_POS = (H_{POS} - 1) / 4$$

 HOR_POS represents the contents of bits 5 , 4 , 3 , 2 , 1 , 0 of the Horizontal Position Register (HOR_POS). The default value is 3h. When the value is 3h, the OSD is at the left-most OSD position on the screen.

 H_{POS} is the number of pixels from the left of the screen to the OSD start position. H_{POS} must be a positive integer with a minimum value of 5 incrementing by 4.

3.2 Second Color Feature

Second Color feature is the logical division of each column into two parts along each row for changing foreground color. The number of each half-column is called the Second Color Position.

The Second Color feature can be used to implement an analog bar for volume control, tuning, etc. The change step for color is half the character size. Refer to Tables 8 and 9.

Second Color Control Register

The Second Color Position is the place where the foreground color changes to the color defined in the Second Color Control Register.

Table 8 Second Color Control Register 07h:Bank A (SNDCLR_CNTRL)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Second Color Enable	7	R/W	0 1	Disables the second color feature Enables the second color feature
Second Color	6, 5, 4	R/W		R, G, B respectively. Defines the second color after the second color position defined in SNDCLR register.
Row Address	3, 2, 1, 0	R/W		Defines one of the 10 rows (from 0, the first row, to 9, the 10th row).

Second Color Register

Table 9 Second Color Register 08h:Bank A (SNDCLR)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	×	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7	R	0	Return 1
		W	1	No effect
HV _{SYNC} Interrupt Option	6	R/W	0	Interrupt Pending Disabled
			1	Interrupt Pending Enabled
Second Color Position	5,4,3,2,1,0	R/W		Specifies start position of the color change to the second color.

Note: Column increment is 0.5. Offset is 03h. System software requires that the offset be added to the increment for the second color in the bar display. The bar position must be defined before the second color is enabled.

Bit 6 , HV_{SYNC} Interrupt Option, defines the procedure for processing when a second interrupt is issued before the first interrupt has completed processing. If bit 6 is set to 0, bit 6 is not pending the other interrupt (H_{SYNC} or V_{SYNC}) while one is in service. If bit 6 is set to 1, bit 6 is pending the other interrupt (H_{SYNC} or V_{SYNC}) while one is in service.

Figure 8 is an example of second color display in the eighth row of the OSD. Each of the small grid squares represents one pixel. Each column has two areas for second color display. In this example, the second color is at Position 6. The second color position for the first column has a value of 3 because the OSD is offset from the left of the TV screen at a distance equal to 03h. Each column is the size of one display character. Each Second color column is a half character column. The screen position offset is added to Second color position. Because the offest is 03h, the Second color positions begin with 3 = (3+0), 4 = (3+1), 5 = (4+1), and so forth.

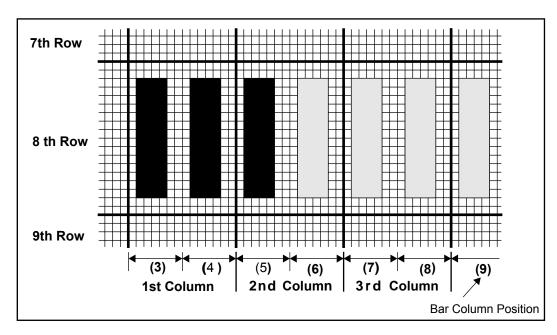


Figure 8 Second Color Display

3.3 Mesh and Halftone Effect

Mesh is a grid-like area that contains an alternating pixel display of OSD and transparent zones. See Figure 9. The transparent zones allow the TV signal display to appear in part while the mesh display is active.

Halftone effect is a transparent area that appears slightly darker than the regular picture carried by the TV signal.

Mesh and halftone effects both serve as backgrounds for menus, action bars, and other On-Screen Displays. The mesh feature is only for interlaced-mode video systems.

Mesh can be controlled in two ways: through hardware or through software for alternating pixel display in different fields.

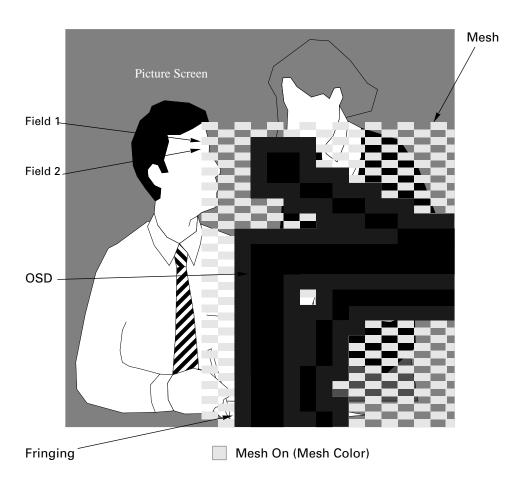


Figure 9 Mesh On

General descriptions of the registers used to control the mesh are contained in Tables 10 through 13.

Table 10 Mesh Column Start Register 04h: Bank F (MC_St)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	×	х	х	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6, 5	R W		Return 1 No effect
Mesh Window Start	4, 3, 2, 1, 0	R/W		Defines the start character number in the mesh window.

Table 11 Mesh Column End Register 05h: Bank F (MC_End)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	х	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6, 5	R W		Return 1 No effect
Mesh Window End	4, 3, 2, 1, 0	R/W		Defines the character number after the mesh window display.

MC_St and MC_End define the width and horizontal position of the mesh window.

Table 12 Mesh Row Enable Register 06h: Bank F (MR_En)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
V _{BLANK} Delay	7, 6, 5, 4	R/W	0000	No Delay
			0001	Delay by 0.5 Dot-Clock Period
			0010	Delay by 1.0 Dot-Clock Period
			0011	Delay by 1.5 Dot-Clock Period
			0100	Delay by 2.0 Dot-Clock Period
			0101	Delay by 2.5 Dot-Clock Period
			0110	Delay by 3.0 Dot-Clock Period
			0111	Delay by 3.5 Dot-Clock Period
			1000	Delay by 4.0 Dot-Clock Period
			1001	Delay by 4.5 Dot-Clock Period
			1010	Delay by 5.0 Dot-Clock Period
			1011	Delay by 5.5 Dot-Clock Period
			1100	Delay by 6.0 Dot-Clock Period
			1101	Delay by 6.5 Dot-Clock Period
			1110	Delay by 7.0 Dot-Clock Period
			1111	Delay by 7.5 Dot-Clock Period
Foreground Character for	3	R/W	0	Not included
Halftone Effect			1	Included
Reserved	2, 1	R/W		Must be 0
Mesh Window Row	0	R/W	0	No mesh OSD for Next Row
			1	Mesh OSD for Next Row

Bits 7, 6, 5, and 4, VBLANK Delay, set the amount of time that the VBLANK signal is properly aligned with the OSD RGB output with delay from external circuitries.

Bit 3, Character Foreground for Halftone Effect, defines whether displaying a foreground color for character display is included. If bit 3 is set to 0, halftone is disabled for pixels with foreground color. If bit 3 is set to 1, halftone is active for pixels with both foreground and background colors.

Bit 0, Mesh Window Row, sets the mesh effect to On or Off for the next row of the OSD.

Table 13 Mesh Control Register 07h: Bank F (MC_Reg)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

DC004200 TVC4000

Bit/ Field	Bit Position	R/W	Value	Description
Halftone Effect Output	7	R/W	xx/x	Bits 5, 4 in ROW_SPACE/ bit 7
Delay on P20			00/0	No Delay
			00/1	Delay by 0.5 Dot-Clock Period
			01/0	Delay by 1.0 Dot-Clock Period
			01/1	Delay by 1.5 Dot-Clock Period
			10/0	Delay by 2.0 Dot-Clock Period
			10/1	Delay by 2.5 Dot-Clock Period
			11/0	Delay by 3.0 Dot-Clock Period
			11/1	Delay by 3.5 Dot-Clock Period
Mesh Color	6, 5, 4	R/W		Defines the mesh color.
				B,G,R respectively.
P20 for	3	R/W	0	Normal Mesh effect
Halftoning			1	Use P20 Output for Halftoning
Software Field	2	R/W	0	Even Field/Positive Halftone
Number/Polarity of				Effect Output
Halftone Effect Output			1	Odd Field/Negative Halftone
				Effect Output
Software Mesh	1	R/W	0	Hardware Defines Field Number
			1	Software Defined Field Number
Mesh Enable	0	R/W	0	Mesh is Disabled
			1	Mesh is Enabled

Note: When working with Progressive mode, mesh does not work the same way as in Interlace mode.

Bit 7, Halftone Output Delay on P20, is the amount of time that output of the halftone signal is delayed to compensate for the amount of delay of OSD RGB from external circuitries.

Bits 6, 5, and 4, Mesh Color, define the color of the mesh window. The colors are specified in Blue, Green, Red order, as shown in Table 14.

Table 14 BGR Mesh Colors

В	G	R	Color
0	0	0	Black
0	0	1	Red
0	1	0	Green
0	1	1	Yellow
1	0	0	Blue
1	0	1	Magenta
1	1	0	Cyan
1	1	1	White

Bit 3,P20 for Halftone, selects mesh or halftone effect. If bit 3 is set to 1, P20 outputs halftone. If reset to 0, P20 is a normal I/O pin.

Bit 2, Software Field Number/Polarity of Halftone Output, has several possible values. The value of this bit remains the same for the entire mesh window; it does not change from row to row.

If bit 3 is set to 1 (halftone), bit 2 defines the polarity of halftone output. If bit 3 is reset to 0 and bit 1 is set to 1, then bit 2 defines the field number (even or odd).

Bit 1, Software Mesh, defines whether hardware or software sets the current field number. When the value equals 0, hardware defines field number. When the value equals 1, software defines the field number.

Bit 0, Mesh Enable, disables or enables using mesh. This field is used in conjunction with MR_EN (0). The value of Mesh Enable is changed only when Mesh Window Row equals 0 (the current OSD row is not part of a mesh window). If the value is changed when the current row is part of the mesh window, partial or missing characters are likely to be displayed.

3.4 OSD Fade

Fading is the gradual disappearance of the OSD. Fading occurs vertically, up or down. Figure 10 shows the fade-down effect.

Fade control registers can only be updated during V_{SYNC}, not during row interrupt. Otherwise, unexpected results can occur.

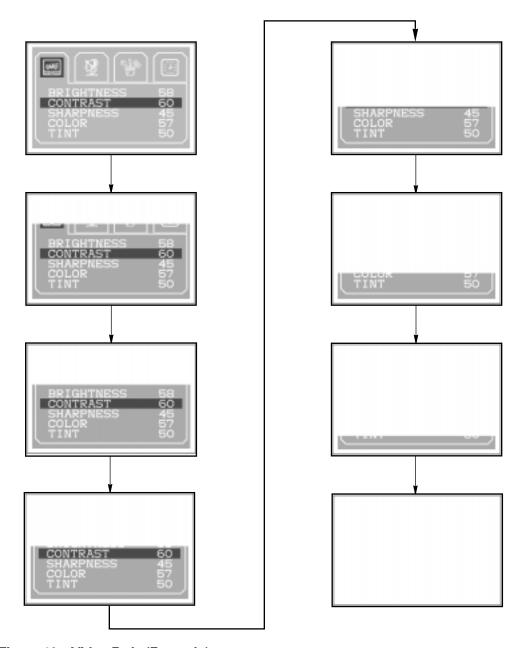


Figure 10 Video Fade (Example)

This feature is controlled through the FADE_POS1 (Table 15), FADE_POS2 (Table 16), and ROW_SPACE registers (Table 17).

Table 15 Fade Position Register 1 05h: Bank A (FADE_POS1)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value Description
Reserved	7, 6, 5, 4	R W	Return 1 No effect
Row Number of the Screen	3, 2, 1, 0	R/W	OSD Row number for fading

Bits 3, 2, 1, and 0 define the boundary row for the fade area. The portion of the OSD above or below the row number fades up or down, as set in Fade Direction, ROW_SPACE(6).

The fade starts at the scan line set in FADE_POS2 (4,3,2,1,0) within the row number set in FADE_POS1 (3,2,1,0).

Table 16 Fade Position Register 2 06h: Bank A (FADE_POS2)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/	Bit	D/M	Value	Description
Field	Position	R/W	Value	Description
Reserved	7, 6, 5	R		Return 1
		W		No effect
Scan Line Number	4, 3, 2, 1, 0	R/W		Scan Line Number of a row

3.5 Inter-Row Spacing

Inter-Row Spacing can be from 0 to 15 horizontal scan line (HL). A setting of 0 HL is called Continuous Row Display. A horizontal interrupt is generated at the start of each row. Software must program the spacing between the current row and the next row during the current horizontal interrupt.

The time required to process a row must not exceed the display time of the row. Refer to Table 17.

Table 17 Row Space Register 04h: BankA (ROW_SPACE)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Fade On/Off	7	R/W	0	Fade feature disabled
			1	Fade feature enabled
Fade Direction	6	R/W	0	Fade area below the defined
				fade position
			1	Fade area above the sefined
				fade position
Halftone Effect Output	5, 4	R/W		Works with bit 7 in MC_Reg
Delay On P20				_ •
Inter-Row Space	3, 2, 1, 0	R/W		Inter row spacing

Bit 7, Fade ON/OFF, disables or enables the fade effect.

Bit 6, Fade Direction, controls the direction of the fade effect. When Fade Direction is set to 0, the bottom of the TV screen is faded out. Fading occurs beginning with the row number set in FADE_POS1 (3,2,1,0) and the scan line number set in FADE_POS2 (4,3,2,1,0). When the Fade Direction is set to 1, the top of the screen is faded out.

Bits 5 and 4, Halftone Effect Delay on P20, work with MC_REG (7). Bits 3, 2, 1, and 0, Inter-Row Space, specify the number of HL to add between displayed rows.

3.6 Character Generation

Character generation provides the content of the OSD. The Z90255 supports 14-pixel (horizontal) by 18-pixel (vertical) character display with 512 character sets.

Character Cell Resolution

Characters are mapped pixel-by-pixel in Character Generation Read-Only Memory (CGROM).

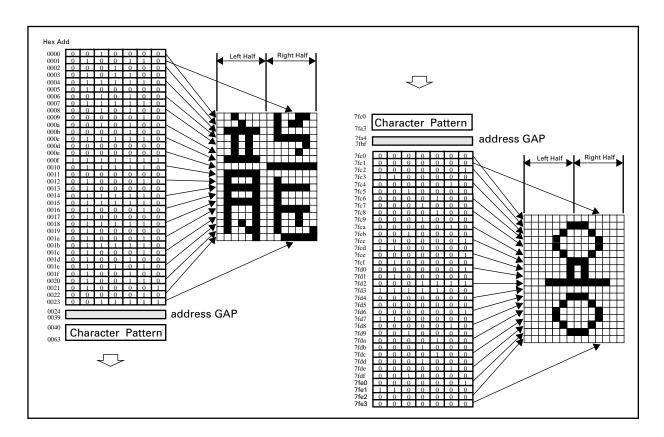
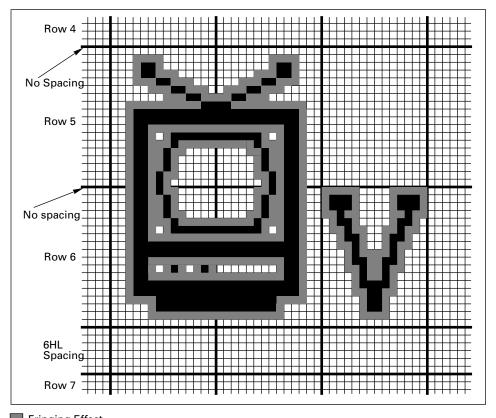


Figure 11 Character Pixel map in CGROM

Figure 11 is an example of a 512 character set where the character pixel map represents the first and last characters. It is 14 pixels horizontal and 18 pixels vertical. Each row in the map is 7 bits long, half the width of the character scan line.

Even numbered rows in the map correspond to pixels on the left half of the character scan line; odd rows in the map correspond to pixels on the right half of the character scan line.

The Hex Add column is a hexadecimal number that serves as an address for the group of pixels from the starting point of the scan line. Addressing begins at 0000h and ends at 0023h for the first character. There is an address gap between characters. The starting address for the second character is 0040h.


Each bit in the map sets the foreground/background designation of the corresponding pixel:

- 0 background pixel
- 1 foreground pixel

The patterns formed by the bits comprise the characters that are displayed when the scan line is output to the screen.

Each of these character pixel maps is one character; 512 characters can be mapped.

Several characters can be combined to form a large icon. Figure 12 is an example of a large icon. Each block marked by the darker grid lines is 14 x 18 pixels, one character.

Fringing Effect

Figure 12 Example of a Multiple Character Icon

3.7 Character Size and Smoothing Effect

The Z90255 supports four character sizes: 1X, 2X, double width, and double height. The 2X size duplicates each pixel horizontally and vertically to reach double size. Figure 13 shows a character at 1X, 2X without smoothing, and 2X with smoothing.

Smoothing means enhancing a character to improve its appearance. This effect can be applied to 2X and double width characters, and is enabled and disabled in DISP_ATTR: 03h: Bank A (4).

Check the effect of smoothing on 2X and double width characters before finalizing OSD programming.

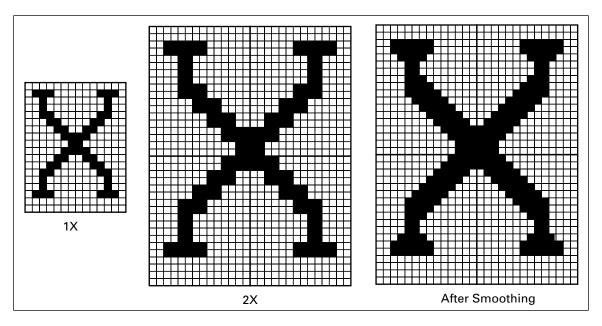


Figure 13 Smoothing Effect on 2X Character Size

3.8 Fringing Effect

Fringing means surrounding a character with a different color than the foreground and background colors. Refer back to Figure 8. Fringing adds visual appeal to the character presentation.

The fringing effect is enabled or disabled in DISP_ATTR: 03h: Bank A (5). The fringing color is set in INT_ST: 07h: Bank C (7) to either 0, the character background color, or to 1, a RGB color specified in INT_ST: 07h: Bank C (6,5,4). The eight RGB colors available for fringing and background are defined in Table 18.

Note: The fringing feature is NOT available in Progressive Mode.

Table 18 RGB Colors

R G B Color 0 0 0 Black 0 0 1 Blue 0 1 0 Green 0 1 1 Cyan 1 0 0 Red 1 0 1 Magenta 1 1 0 Yellow 1 1 1 White				
0 0 1 Blue 0 1 0 Green 0 1 1 Cyan 1 0 0 Red 1 0 1 Magenta 1 1 0 Yellow	R	G	В	Color
0 1 0 Green 0 1 1 Cyan 1 0 0 Red 1 0 1 Magenta 1 1 0 Yellow	0	0	0	Black
0 1 1 Cyan 1 0 0 Red 1 0 1 Magenta 1 1 0 Yellow	0	0	1	Blue
1 0 0 Red 1 0 1 Magenta 1 1 0 Yellow	0	1	0	Green
1 0 1 Magenta 1 1 0 Yellow	0	1	1	Cyan
1 1 0 Yellow	1	0	0	Red
	1	0	1	Magenta
1 1 1 White	1	1	0	Yellow
	1	1	1	White

3.9 Display Attribute Control

Display Attribute Control determines screen display characteristics for the entire screen, not just the OSD area. The background that covers the entire screen is called the Master Background. Its color setting can be used to generate a blue screen when the TV signal is not present. Table 19 shows the Display Attribute Register.

Table 19 Display Attribute Register 03h: Bank A (DISP_ATTR)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Character Display	7	R/W	0 1	Disable Character Display Enable Character Display
Master Background Enable	6	R/W	0 1	No Master Background Incoming video is swapped with the background color
Fringe Effect Enable	5	R/W	0 1	Fringe Effect is Disabled Fringe Effect is Enabled
Smoothing Effect Enable	4	R/W	0 1	Smoothing enabled Smoothing disabled
RGB Polarity	3	R/W	0 1	Positive Negative
Red Master Background	2	R/W		See Table 18
Green Master Background	1	R/W		See Table 18
Blue Master Background	0	R/W		See Table 18

Bit 7, Display Enable, disables or enables using foreground and background color, and therefore character display. When this bit is set to 0, effective space characters are sourced from the video RAM. Background On/Off and row background color are programmed independently. When bit 7 is set to 1, the actual video RAM characters are displayed.

Bit 6, Master Background Enable, disables or enables using a background color for the entire screen instead of the broadcast signal. If this bit is set to 1, the incoming video signal blanks and the screen background displays color according to the background color bits. The color is specified in bits 2, 1, 0. If bit 6 is set to 0, the incoming video signal is displayed.

Bit 5, Fringe Enable, sets the fringe effect ON or OFF.

Bit 4, Smoothing Effect Enable, sets smoothing ON or OFF, and is available for 2X and double width characters.

Bit 3, RGB Polarity, sets color polarity of OSD color output signals to positive or negative.

Bits 2, 1, and 0 form the color for the master background. The eight possible colors are the same ones listed in Table 18.

Video Refresh RAM Access

The Z90255 supports 12-bit character data. Nine bits, P8 and P7 through P0, contain character code. Three additional bits, P8 through P9, contain color palette information. See Figure 14.

Color Palette Selection bits serve as a 3-bit Color Index to the color palette look-up table. When software writes Character Byte data (7-0) into VRAM, it also takes the data in the color index register and writes the corresponding Color Palette Selection Bits (10-8) and the most significant bit of character data (P8).

When updating 3-bit color index data, the most significant bit of the character data must also be updated. Table 20 contains VRAM structure and memory mapping.

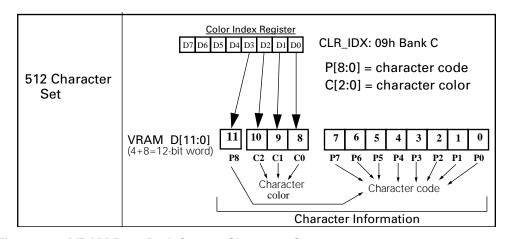


Figure 14 VRAM Data Path for 512 Character Set

Table 20 VRAM Structure and Memory Map

Character Code Data Bit[11] , Character Color C[2:0]		Character Code Data Bit[7:0]	
		Row 0 Attribute(ROW0_ATTR)	FC00
Row0/Column 0 D[11:8]	FE01h	Row 0/Column 0 D[7:0]	FC01
Row0/Column 1 through 22 D[11:8]	FE02h	Row 0/Column 1 through 22 D[7:0]	FC02
	FE17h		FC17
Row 0/Column 23 D[11:8]	FE18h	Row 0/Column 23 D[7:0]	FC18
			7
	1	Row 1 Attribute(ROW1_ATTR)	FC20
Row1/Column 0 D[11:8]	FE21h	Row 1/Column 0 D[7:0]	FC21
Row1/Column 1 through 22 D[11:8]	FE22h	Row 1/Column 1 through 22 D[7:0]	FC22
	FE37h		FC37
Row 1/Column 23 D[11:8]	FE38h	Row 1/Column 23 D[7:0]	FC38
		Row 2 Video RAM buffer	FC40
Row 2 D[11:8]	FE41h	THE	FC41
	FE58h		FC58
		D 0 1/1 DAMA / //	75000
Row 3 D[11:8]	FE61h	Row 3 Video RAM buffer	FC60
110W 0 D[11.0]	FE78h		FC78
		Dow 4 Video DAM buffer	T-C01
D 4 D[44.0]	FF041	Row 4 Video RAM buffer	FC80
Row 4 D[11:8]	FE81h		FC81
	FE98h		FC98

Table 20 VRAM Structure and Memory Map

Character Code Data Bit[11] , Character Color C[2:0]		Character Code Data Bit[7:0]	
		Row 5 Video RAM buffer	FCA0ł
Row 5 D[11:8]	FEA1h		FCA1h
	FEB8h		FCB8h
		Row 6 Video RAM buffer	FCC0h
Row 6 D[11:8]	FEC1h		FCC1h
	FED8h		FCD8h
		Row 7 Video RAM buffer	FCE0h
Row 7 D[11:8]	FEE1h	now / video naivi bullel	FCE1h
110W 7 B[11.0]	FEF8h		FCF8h
		Row 8 Video RAM buffer	FD00h
Day 0 D[11:0]	FF01h	now o video naivi bullei	FD01h
Row 8 D[11:8]	FF18h		FD18h
	LL IOII		FDIOII
		Row 9 Video RAM buffer	FD20h
Row 9 D[11:8]	FF21h		FD21h
	FF38h		FD38h

Hardware processes the entire 12 bits of data at the same time it processes the OSD.

The Color Palette Selection Bits (10-8) are decoded as described in Table 21.

Table 21 Color Palette Selection Bits

Color Index, Bit [10:8]	Function
000	Selects background/foreground color in row attribute
001	Selects color palette 0 in the color look-up table
010	Selects color palette 1 in the color look-up table
011	Selects color palette 2 in the color look-up table
100	Selects color palette 3 in the color look-up table
101	Selects color palette 4 in the color look-up table
110	Selects color palette 5 in the color look-up table
111	Selects color palette 6 in the color look-up table

There are eight different foreground/background palettes, including the 000h case that reads the color(s) from the ROW_ATTR register mapped into video RAM.

Color Table and Color Index Register

Table 22 lists the bits in the Color Index Register.

Table 22 Color Index Register 09h: Bank C (CLR_IDX)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6, 5, 4	R W		Return 1 No Effect
Color Index Data	3, 2, 1, 0	R/W		Bit 3 defines MSb of the character pointer data bit and bit [2:0] for character color data bits

When the Color Index has a value other than 000h, the value indicates the number of the color palette that contains the RGB foreground and background colors to be displayed. In the Color Palette register descriptions below, the following notation is used:

R _{nf}	R - Red,	n - Palette Number,	f - Foreground
R _{nb}	R - Red,	n - Palette Number,	b - Background
G _{nf}	G - Green,	n - Palette Number,	f - Foreground
G _{nb}	G - Green,	n - Palette Number,	b - Background
B _{nf}	B - Blue,	n - Palette Number,	f - Foreground
B _{nb}	B - Blue,	n - Palette Number,	b - Background

The registers for color palettes 0 through 6 are listed in Table 23 through Table 29.

Table 23 Color Palette 0 Register 09h: Bank A (CLR_P0)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R W		Return 1 No Effect
Color Palette 0	5,4,3,2,1,0	R/W		Programming R_{0f} , G_{0f} , B_{0f} , R_{0b} , G_{0b} , B_{0b}

Table 24 Color Palette 1 Register 0Ah: Bank A (CLR_P1)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W	Value Description
Reserved	7, 6	R	Return 1
		W	No Effect
Color Palette 1	5,4,3,2,1,0	R/W	Programming R _{1f} , G _{1f} , B _{1f} , R _{1b} , G _{1b} , B _{1b}

Table 25 Color Palette 2 Register 0Bh: Bank A (CLR_P2)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W Val	ue Description
Reserved	7, 6	R W	Return 1 No Effect
Color Palette 2	5,4,3,2,1,0	R/W	Programming R_{2f} , G_{2f} , B_{2f} , R_{2b} , G_{2b} , B_{2b}

Table 26 Color Palette 3 Register 0Ch: Bank A (CLR_P3)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W Value	Description
Reserved	7, 6	R	Return 1
		W	No Effect
Color Palette 3	5,4,3,2,1,0	R/W	Programming R _{3f} , G _{3f} , B _{3f} , R _{3b} , G _{3b} , B _{3b}

Table 27 Color Palette 4 Register 0Dh: Bank A (CLR_P4)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R W		Return 1 No Effect
Color Palette 4	5,4,3,2,1,0	R/W		Programming R _{4f} , G _{4f} , B _{4f} , R _{4b} , G _{4b} , B _{4b}

Table 28 Color Palette 5 Register 0Eh: Bank A (CLR_P5)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R W		Return 1 No Effect
Color Palette 5	5,4,3,2,1,0	R/W		Programming R _{5f} , G _{5f} , B _{5f} , R _{5b} , G _{5b} , B _{5b}

Table 29 Color Palette 6 Register 0Fh: Bank A (CLR_P6)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W	Value Description
Reserved	7, 6	R	Return 1
		W	No Effect
Color Palette 6	5 5,4,3,2,1,0	R/W	Programming R _{6f} , G _{6f} , B _{6f} , R _{6b} , G _{6b} , B _{6b}

Row Attribute Register

The Row Attribute Register (Table 30) is mapped to VRAM, as shown in Table 20. This register controls row background and foreground display. If the Color Index is set to 000h, the display color is read from the Row Attribute Register.

Table 30 Row Attribute Register (ROW_ATTR)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	х	×	х	х	х	х

Bit/ Field	Bit Position	R/W	Value	Description
Row Foreground Enable	7	R/W	0 1	Row Foreground Color displayed Row Foreground color disabled
Row Foreground Color	6, 5, 4	R/W		Defines the Character Color R, G, B, respectively
Row Background Enable	3	R/W	0 1	Row Background Color disabled Row Background color displayed
Row Background Color	2, 1, 0	R/W		Defines the Row Background Color R, G, B, respectively

3.10 HV Interrupt Processing

An interrupt is issued at the beginning of a row and at the leading edge of the V_{SYNC} signal. The leading edge of the first H_{SYNC} of a row constitutes the beginning of a row. The Z90255 software tracks this cycle as two recurring events, the Horizontal (H_{SYNC}) Interrupt and the Vertical (V_{SYNC}) Interrupt.

A V_{SYNC} interrupt marks the time for displaying a new field of a TV frame. Displaying subsequent rows coincides with the issuance of the H_{SYNC} interrupt. The interrupts mark the time when displaying a row or start of a field is to occur.

Each text row is comprised of 18 scan lines. Each scan line takes $63.5~\mu s$ to be displayed. So, $1143~\mu s$ is the amount of time available to change programming for the next row. Double-size and double-height characters span 36~s c an lines, allowing $2286~\mu s$ to program the next row. Additional programming time is available with inter-row spacing. VRAM is updated during that time.

If the program has too much to display, black lines appear at the top of the screen.

The HV Interrupt Status Register (Table 31) keeps track of the type of interrupt issued, horizontal or vertical.

Table 31 HV Interrupt Status Register 07h: Bank C (INT_ST)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Fringe Color Selection	7	R/W	0 1	Select Character Background Color Select Fringe Color RGB*
Fringe Color	6, 5, 4	R/W		Defines Fringe Color RGB
Palette Mode	3	R/W	0 1	Normal Mode Color Palette Mode
Horizontal Interrupt Enable	2	R/W	0 1	No Horizontal Interrupt Enable Horizontal Interrupt

PS001300_TV/C1099 Proliminary 5

Bit/ Field	Bit Position	R/W	Value	Description
Vertical Interrupt	1	R	0	No Vertical Interrupt
			1	Vertical Interrupt
		W	0	No Effect
			1	Reset Vertical Interrupt Flag
Horizontal Interrupt	0	R	0	No Horizontal Interrupt
			1	Horizontal Interrupt
		W	0	No Effect
			1	Reset Horizontal Interrupt Flag

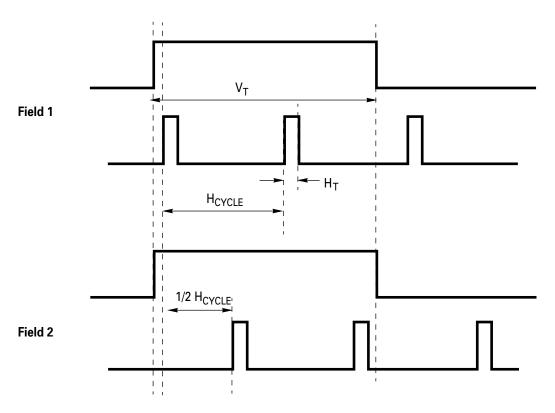
Note: *The fringing feature is not available in Progressive Mode.

Bit 7, Fringe Color Selection, sets the fringe color to the background color or to a Red, Green, and Blue color specified in bits 6, 5, 4.

Bit 3, Palette Mode, sets color to Normal or VRAM Mode. When the value is 0 (Normal Mode), the color attribute of a row is controlled by values in the ROW_ATTR register which is mapped in VRAM, but the Color Palette Selection Bits are ignored. When the Palette Mode value is 1, the Color Palette Selection Bits are used, unless they are set to 0s. In that case, the values in the ROW_ATTR register are used.

Bit 2, Horizontal Interrupt Enable, disables or enables the horizontal (H_{SYNC}) interrupt.

Bit 1, Vertical Interrupt, has different meanings depending on its Read and Write status. In Read State, a value of 0 indicates that a vertical interrupt was not issued; a value of 1 indicates that a vertical interrupt was issued. In Write State, a value of 0 has no effect; a value of 1 resets the vertical interrupt flag.


Bit 0, Horizontal Interrupt, has different meanings depending on its status. In Read State, a value of 0 indicates that a horizontal interrupt was not issued; a value of 1 indicates that a horizontal interrupt was issued. In Write State, a value of 0 has no effect; a value of 1 resets the horizontal interrupt flag.

When an interrupt is issued while another interrupt is processing, the last-issued interrupt is pended. The interrupt-flag bit which is in service (the interrupt issued first) must be cleared or serviced before the pended interrupt can be processed (see SNDCLR (6)).

H_{SYNC} and V_{SYNC} Requirements

 H_{SYNC} and V_{SYNC} must meet all TV broadcasting specifications. The minimum width of V_{SYNC} must conform to the specification in Figure 15.

 V_T must be larger than 1.5 x ($H_{CYCLE} + H_T$). The same timing specification must applied in negative polarity.

Figure 15 H_{SYNC} and V_{SYNC} Specification

The rising edge of V_{SYNC} must not coincide with the rising edge of H_{SYNC} to be sure that the controller recognizes both rising edges.

PS001300.TVC1099 Proliminary 5

4 Z90255 I2C MASTER INTERFACE

The Z90255 has a hardware module which supports the I²C Master interface. Bus arbitration and Masters' arbitration logic is NOT implemented; in other words, the Z90255 is designed for a **Single Master** application.

The I^2C interface can be configured to run at four different transfer speeds defined by bits (1,0) in the I^2C Control Register (I^2C_CNTL : 0Ch, Bank:C).

To circumvent possible problems on both DATA and SCLK lines, digital filters with time constant equal to $3 T_{sclk}$ are implemented on all inputs of the I^2C bus interface. The Z90255 has two separate I^2C busses which share the same I^2C state machine.

The I²C module is enabled by setting bit (2) in the I2C_CNTL register to 1(see Figure 16). This bit blocks out I²C logic if it is set to 0. To prevent switching the I²C bus during activation, bits (7,6) of the Port 2 Data Register for I²C selection 1 (bits (5,4) of Port 2 Data Register for I²C selection 0) should be set to 1 before the I²C module is enabled.

Notes:

- 1. When the I²C module is enabled, pins used as I²C must be configured as output in the Port 2 Mode Register (P2M: F6h). If P27/P26 or P25/P24 are used as I²C pins, then these pins are automatically set to open-drain mode.
- 2. Port 2 must be configured in standard drive mode (PCON: 00h: Bank F) when the I^2C interface is active.

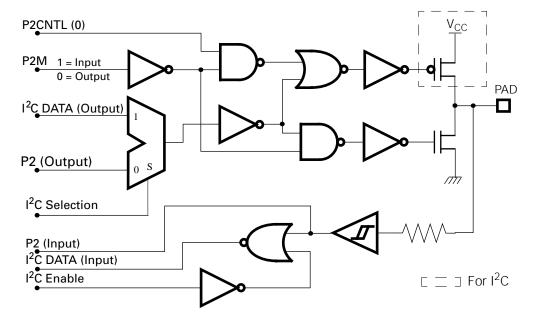


Figure 16 Bidirectional Port Pin Pad Multiplexed with I2C Port

Table 32 Master I²C Control Register 0Ch: Bank C (I²C_CNTL)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	0	0	×	х	х	х

Bit/ Field	Bit Position	R/W	Value	Description
Clock Selection	7	R/W	0 1	1X SCLK for I ² C and ADC 0.5X SCLK for I ² C and ADC
Reserved	6	R W		Return 1 No Effect
I ² C Selection 1	5	R/W	0	P26 selection - POR P27 selection - POR SCLK1 selection on P26
I ² C Selection 0	4	R/W	0	P24 selection - POR P25 selection - POR SCLK 0 selection on P24 SDATA0 selection on P25
Reserved	3	R/W		Must be 0
I ² C Enable	2	R/W	0 1	Disable I ² C Interface Enable I ² C Interface
I ² C Speed (for 6-MHz XTAL)	1, 0	R/W	00 01 10 11	10 KHz 50 KHz 100 KHz 330 KHz

If bits 4 and 5 both equal 1, then the I^2C Selection 0 prevails.

4.1 Controlling the I²C Interface

Software controls the I^2C module by writing appropriate commands into the I^2C Command Register ($I^2C_CMD: 0Bh: 0Ch$). See Table 33.

Table 33 Master I²C Command Register 0Bh: Bank C (I²C_CMD)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	х	х	х	х	х	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7	R		Return 1
		W		No Effect
I ² C Command	6, 5, 4	R		Return 1
		W		See Table 35
Reserved	3, 2	R		Return 1
		W		No Effect
Reset	1	R		Return 1
		W	0	No Effect
			1	Reset I ² C interface
Busy	0	R	0	Idle
			1	Busy
		W		No Effect

Software puts data to be transmitted into I^2C Data Register (Table 34) and reads received data from it. Bit 7 in this register is used as an acknowledge bit when receiving data from a Slave. Bit 0 of I^2C_DATA register contains an acknowledgment bit generated by the Slave. Refer to Table 35.

Table 34 Master I²C Data Register 0Ah: Bank C (I²C_DATA)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W Value	Description
Data	7,6,5,4,3,2,1,0	R W	Received data Data to be sent

Table 35 Master I²C Bus Interface Commands

Command	Description
000	Send a Start bit followed by the address byte specified in the I ² C data register, then fetch the acknowledgment bit in I ² C_DATA (0). Used to initialize communication. Nine SCLK cycles are generated.
001	Send the byte of data specified in the I ² C data register, then fetch an acknowledgment bit stored in bit 0. Used in a Write frame. Nine SCLK cycles are generated.
010	Send bit 7 of I ² C_DATA register as an acknowledgment bit (ACK: (0XXXXXXX), NAK: (1XXXXXXX)), then receive a data byte. Used in a Read frame when the next data byte is expected. Nine SCLK cycles are generated. Received data is read in the I ² C data register.
011	Send bit 7 of I ² C_DATA register as an acknowledgment bit (ACK: (0XXXXXXX), NAK: (1XXXXXXX). Used in a Read frame. One SCLK cycle is generated.
10X	Null operation. Must be used with a Reset bit.
110	Received one data byte. Used in a Read frame to receive the first data byte after an address byte is transmitted. Eight SCLK cycles are generated.
111	Send Stop bit. One SCLK cycles are generated.

5 INPUT/OUTPUT PORTS

There are 20 input/output (I/O) ports. In addition, seven pulse-width modulators (PWM), PWM1 through PWM6, and PWM11, can be configured as regular output ports. The maximum number of I/O ports available is 27. Please refer to the port bank and number carefully for exact addressing and access. See Table 36 through Table 46.

Table 36 Port configuration Register 00h: Bank F (PCON)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Low EMI Z8 Oscillator	7	R/W	0 1	Low EMI Noise Standard-POR
Low EMI Port 6	6	R/W	0 1	Low EMI Noise Standard-POR
Low EMI Port 2	5	R/W	0 1	Low EMI Noise Standard-POR
Reserved	4, 3	R W		Return 1 Write 1s
Low EMI Port 4 and PWMs	2	R/W	0 1	Low EMI Noise Standard-POR
Low EMI OSD Oscillator	1	R/W	0 1	Low EMI Noise Standard-POR
Reserved	0	R/W		Return Unknown No Effect

Ports 2, 4, and 6 can be set for Standard or Low EMI. The Low EMI option can also be selected for the microcontroller oscillator or OSD oscillator. Standard (1) is the High setting. Following Power-On Reset, Bits 1, 2, 5, 6, 7 each has a value of 1.

PS001200_TV/C1099 Proliminary 5

Table 37 Port 2 Mode Register F6h: P2M

Bit	7	6	5	4	3	2	1	0
R/W	W	W	W	W	W	W	W	W
Reset	1	1	1	1	1	1	1	1

Bit/ Field	Bit Position	R/W	Value	Description
P27 I/O Definition	7	W	0	Defines P27 as Output
			1	Defines P27 as Input
P26 I/O Definition	6	W	0	Defines P26 as Output
			1	Defines P26 as Input
P25 I/O Definition	5	W	0	Defines P25 as Output
			1	Defines P25 as Input
P24 I/O Definition	4	W	0	Defines P24 as Output
			1	Defines P24 as Input
P23 I/O Definition	3	W	0	Defines P23 as Output
			1	Defines P23 as Input
P22 I/O Definition	2	W	0	Defines P22 as Output
			1	Defines P22 as Input
P21 I/O Definition	1	W	0	Defines P21 as Output
			1	Defines P21 as Input
P20 I/O Definition	0	W	0	Defines P20 as Output
•			1	Defines P20 as Input

When P27/P26 or P25/P24 are used as I^2C pins, then these pins are automatically set to open-drain mode.

Table 38 Port 2 Data Register 02h: P2

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	х	х	х	х	х	х

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
P27	7	R		Data input on P27
		W		Data Output on P27
P26	6	R		Data input on P26
		W		Data Output on P26
P25	5	R		Data input on P25
		W		Data Output on P25
P24	4	R		Data input on P24
		W		Data Output on P24
P23	3	R		Data input on P23
		W		Data Output on P23
P22	2	R		Data input on P22
		W		Data Output on P22
P21	1	R		Data input on P21
		W		Data Output on P21
P20	0	R		Data input on P20
		W		Data Output on P20

Port 4 Pin-Out Selection Register

Bits 5, 4, 3, and 2 control the configuration of multiplexed pins 20, 19, 18, and 17. If a bit is set to 0, the pin functions as a PWM output port. This value is the default following a Power-On Reset. If a bit is set to 1, the pin functions as a programmable regular input/output port. See Table 39.

Table 39 Port 4 Pin-Out Selection Register 08h: Bank C (PIN_SLT)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	x	1	1	1	1	х	х

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R		Return 1
	, -	W		No Effect
P47/PWM10	5	R/W	0	Selects PWM10
			1	Selects P47 - POR
P46/PWM9	4	R/W	0	Selects PWM9
			1	Selects P46 - POR
P45/PWM8	3	R/W	0	Selects PWM8
			1	Selects P45 - POR
P44/PWM7	2	R/W	0	Selects PWM7
			1	Selects P44 - POR
Reserved	1, 0	R		Return 1
		W		No Effect

Table 40 Port 4 Data Register 05h: Bank C (PRT4_DTA)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	х	х	х	х	х	х

Bit/	Bit				
Field	Position	R/W	Value	Description	
P47	7	R		Data input on P47	
		W		Data Output on P47	
P46	6	R		Data input on P46	
		W		Data Output on P46	
P45	5	R		Data input on P45	
		W		Data Output on P45	
P44	4	R		Data input on P44	
		W		Data Output on P44	
P43	3	R		Data input on P43	
		W		Data Output on P43	

Bit/	Bit				
Field	Position	R/W	Value	Description	
P42	2	R		Data input on P42	
		W		Data Output on P42	
P41	1	R		Data input on P41	
		W		Data Output on P41	
P40	0	R		Data input on P40	
		W		Data Output on P40	

Table 41 Port 4 Direction Control Register 06h: Bank C (PRT4_DRT)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Note: R = Read W = Write X = Indeterminate

Bit Position	R/W	Value	Description
7			-
	R/W	0 1	Defines P47 as Output Defines P47 as Input-POR
6	R/W	0 1	Defines P46 as Output Defines P46 as Input-POR
5	R/W	0 1	Defines P45 as Output Defines P45 as Input-POR
4	R/W	0 1	Defines P44 as Output Defines P44 as Input-POR
3	R/W	0 1	Defines P43 as Output Defines P43 as Input-POR
2	R/W	0 1	Defines P42 as Output Defines P42 as Input-POR
1	R/W	0 1	Defines P41 as Output Defines P41 as Input-POR
0	R/W	0 1	Defines P40 as Output Defines P40 as Input-POR
	5 4 3 2	5 R/W 4 R/W 3 R/W 1 R/W	6 R/W 0 1 1 5 R/W 0 1 1 4 R/W 0 1 1 2 R/W 0 1 1 1 1 1 R/W 0 1 1 1 1 R/W 0 1 1 1 0 R/W 0 0 1 1 1 1 R/W 0 1 1 1 1 R/W 0 1 1 1 1 R/W 0 1 1 1 1 1 R/W 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 42 PWM Mode Register 0Dh: Bank B (P_MODE)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	1	1	1	1	1

Bit/ Field	Bit Position	R/W	Value	Description
6-Bit/14-bit PWM6	7	R/W	0	Select 6 bit-POR
			1	Select 14 bit
P56/PWM 11	6	R/W	0	Select PWM 11
			1	Select P56-POR
P55/PWM 6*	5	R/W	0	Select PWM 6
			1	Select P55-POR
P54/PWM 5	4	R/W	0	Select PWM 5
			1	Select P54-POR
P53/PWM 4	3	R/W	0	Select PWM 4
			1	Select P53-POR
P52/PWM 3	2	R/W	0	Select PWM 3
			1	Select P52-POR
P51/PWM 2	1	R/W	0	Select PWM 2
			1	Select P51-POR
P50/PWM 1	0	R/W	0	Select PWM 1
			1	Select P50-POR

Note: *PWM6 is either 6-bit or 14-bit depending on the bit status in D7.

Table 43 Port 5 Data Register Ch: Bank B (PRT5_DTA)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	×	х	х	х	х	×	×	х

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7	R		Return 1
		W		No Effect
256	6	R		Data input on P56
		W		Data Output on P56
	5	R		Data input on P55
		W		Data Output on P55
P54	4	R		Data input on P54
		W		Data Output on P54
253	3	R		Data input on P53
		W		Data Output on P53
52	2	R		Data input on P52
		W		Data Output on P52
251	1	R		Data input on P51
		W		Data Output on P51
² 50	0	R		Data input on P50
		W		Data Output on P50

Table 44 Port 5 Direction Control Register 0Eh: Bank B (PRT5_DRT)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	1	1	1	1	1	1	1

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7	R W		Return 1 No Effect
P56 I/O Definition	6	R/W	0 1	Defines P56 as Output Defines P56 as Input-POR
P55 I/O Definition	5	R/W	0 1	Defines P55 as Output Defines P55 as Input-POR

Z90255 ROM and Z90251 OTP 32 KB Television Controller with OSD

Bit/ Field	Bit Position	R/W	Value	Description
P54 I/O Definition	4	R/W	0	Defines P54 as Output
			1	Defines P54 as Input-POR
P53 I/O Definition	3	R/W	0	Defines P53 as Output
			1	Defines P53 as Input-POR
P52 I/O Definition	2	R/W	0	Defines P52 as Output
			1	Defines P52 as Input-POR
P51 I/O Definition	1	R/W	0	Defines P51 as Output
			1	Defines P51 as Input-POR
P50 I/O Definition	0	R/W	0	Defines P50 as Output
			1	Defines P50 as Input-POR

Table 45 Port 6 Data Register 03h: Bank F (PRT6_DTA)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6, 5, 4	R		Return Unknown
		W		No Effect
P63	3	R		Data input on P63
		W		Data Output on P63
P62	2	R		Data input on P62
		W		Data Output on P62
P61	1	R		Data input on P61
		W		Data Output on P61
P60	0	R		Data input on P60
		W		Data Output on P60

Table 46 Port 6 Direction Control Register 02h: Bank F (PRT6_DRT)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bit/ Field	Bit Position	R/W	Value	Description
P63	7	R/W	0	Open-Drain Output
			1	Push-Pull Output - POR
P62	6	R/W	0	Open-Drain Output
			1	Push-Pull Output - POR
P61	5	R/W	0	Open-Drain Output
			1	Push-Pull Output - POR
P60	4	R/W	0	Open-Drain Output
			1	Push-Pull Output - POR
P63 I/O	3	R/W	0	Data Output
definition			1	Data Input - POR
P62 I/O	2	R/W	0	Data Output
definition			1	Data Input - POR
P61 I/O	1	R/W	0	Data Output
definition			1	Data Input - POR
P60 I/O	0	R/W	0	Data Output
definition			1	Data Input - POR

PS001300-TVC1099 Preliminary 6

6 INFRARED INTERFACE

The Z90255 supports the Infrared (IR) Remote Control interface with a minimum of software overhead.

Two bytes of data are received through the Infrared (IR) Interface. The lower byte, bits 7–0, is stored in IR Capture Register 0. The upper byte, bits 15–8, is stored in IR Capture Register 1.

When an IR interrupt occurs, the IR capture registers contain the amount of time passed from the previous IR interrupt if bit 0 in the TCR0 is set to 0. If bit 0 is set to 1, the IR capture registers contain the amount of time passed from the last overflow of the IR capture counter. The IR interrupt flags are reset by the IR interrupt service routine software. Refer to Table 47 through Table 50.

Timer Control Register 0

Rising edge (falling edge) interrupt is preserved even when a falling edge (rising edge) interrupt occurs. But it is overridden by a second rising edge (falling edge) if the second one occurs before the first rising edge (falling edge) is serviced. Preservation of the interrupt means that it generates the hardware interrupt after the first interrupt is serviced when two different (rising edge/falling edge) interrupts are already ON.

Table 47 Timer Control Register 0 01h: Bank C (TCR0)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	×	х	х	х	х	х	х	х

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6, 5, 4, 3	R W		Return 0 No Effect
CAPint_r	2	R W	0 1 0 1	No Rising Edge is Captured Rising Edge is Captured No Effect Reset Flag

Bit/ Field	Bit Position	R/W	Value	Description
CAPint_f	1	R	0	No Falling Edge is Captured
			1	Falling Edge is Captured
		W	0	No Effect
			1	Reset Flag
Tout_CAP	0	R	0	No Time-out of the Capture Timer
			1	Time-out of the Capture Timer
		W	0	No Effect
			1	Reset Flag

During the interrupt service routine, software must read the contents of Timer Control Register 0. Then it checks which bit is set to 1, indicating the type of edge which generated the interrupt.

Table 48 Timer Control Register 1 02h: Bank C (TCR1)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	1	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7	R W		Return 0 No Effect
CAP Halt	6	R/W	0 1	Capture Timer Running Capture Timer Halted
CAP Edge	5, 4	R/W	00 01 10 11	No capture Capture on Rising Edge Only Capture on Falling Edge Only Capture on Both Edges
CAP Glitch	3, 2	R/W	00 01 10 11	Glitch Filter Disabled <2SCLK Filtered Out <8SCLK Filtered Out <16SCLK Filtered Out

Bit/ Field	Bit Position	R/W	Value	Description	
CAP Speed	1, 0	R/W	00	SCLK/32	-
			01	SCLK/4	
			10	SCLK/8	
			11	SCLK/16	

Bit 6 resets the IR Capture Timer. To stop the timer, set this bit to 1. To start the timer, set the bit to 0.

Bits 5 and 4 set the IR Capture Edge. The rising edge, the falling edge, or both edges of an input signal can be used as the source of IR interrupts. If both edges are set as interrupt sources, Timer Control Register 0 (TCR0: 01h: Bank C) must be read and checked by the Interrupt Service Routine (ISR) in order to identify which edge was captured.

Bits 3 and 2 contain a time constant used in a digital filter to process the IR Capture module in order to prevent errors.

Bits 1 and 0 set the IR Capture Counter to one of four different speeds.

The IR capture counter is driven by the clock generated by dividing the system clock in the Z90255.

Table 49 IR Capture Register 0 03h: Bank C (IR_CP0)

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W	Value	Description
IR Capture Register 0	7,6,5,4,3,2,1,0	R		Reading Low Byte of IR Capture Data

Z90255 ROM and Z90251 OTP 32 KB Television Controller with OSD

Table 50 IR Capture Register 1 04h: Bank C (IR_CP1)

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W	Value Description
IR Capture Register 1	7,6,5,4,3,2,1,0	R	Reading High Byte of IR Capture Data

7 PULSE WIDTH MODULATORS

The Z90255 has 11 Pulse Width Modulator channels. PWM1 through PWM10 have 6-bit resolution and are typically used for audio and video level control. PWM11 has 14-bit resolution and is typically used for voltage synthesis tuning. PWM11 uses two registers to accommodate its 14-bit resolution. PWM6 can be configured as either 14-bit or 6-bit.

7.1 PWM Mode Register

PWM Mode Register (Table 51) controls the setting of multiplexed pins1-7. These pins can be configured to function as PWM output ports or regular output ports. If a bit is reset to 0, the pin outputs the PWM signal. If a bit is set to 1, the pin is a regular output port.

Table 51 PWM Mode Register 0Dh: Bank B (P_MODE)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	1	1	1	1	1

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
6-bit/14-bit PWM6	7	R/W	0	Select 6-bit (POR)
			1	Select 14-bit
PWM 11 / P56	6	R/W	0	Select PWM 11
			1	Select P56 - POR
PWM 6* / P55	5	R/W	0	Select PWM 6
			1	Select P55 - POR
PWM 5 / P54	4	R/W	0	Select PWM 5
			1	Select P54 - POR
PWM 4 / P53	3	R/W	0	Select PWM 4
			1	Select P53 - POR
PWM 3 / P52	2	R/W	0	Select PWM 3
			1	Select P52 - POR
PWM 2 / P51	1	R/W	0	Select PWM 2
			1	Select P51 - POR
PWM 1 / P50	0	R/W	0	Select PWM 1
			1	Select P50 - POR

Note: *PWM6 can be either 6- or 14-bit depending on the bit status in bit7.

Port 4 Pin-Out Selection Register

Bits 5, 4, 3, and 2 of the Port 4 Pin-Out Selection Register (Table 52) control the configuration of multiplexed pins 20, 19, 18, and 17. If a bit is reset to 0, the pin functions as a PWM output port. This value is the default following a Power-On Reset. If a bit is set to 1, the pin functions as a programmable regular input/output port.

Table 52 Port 4 Pin-Out Selection Register 08h: Bank C (PIN_SLT)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	1	1	1	1	х	х

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R W		Return 1 No effect
P47/ PWM 10	5	R/W	0 1	Select PWM 10 Select P47 - POR
P46/ PWM9	4	R/W	0	Select PWM 9 Select P46 - POR
P45/ PWM 8	3	R/W	0 1	Select PWM 8 Select P45 - POR
P44/ PWM 7	2	R/W	0	Select PWM 7 Select P44 - POR
Reserved	1, 0	R W		Return 1 No effect

7.2 PWM1 through PWM11

Two data registers (PWM11H and PWM11L) hold the 14-bit PWM11 ratio. If PWM6 is configured to 14-bit, two data registers (PWM6H and PWM6L) hold the 14-bit PWM6 ratio. The upper 7 bits control the width of the distributed pulse. The lower 7 bits distribute the minimum resolution pulse in the various time slots. Using this technique, the pseudo-repetition of frequency is raised up to 128 times faster than ordinary pulse width modulation.

There are 128 time slots which start from time slot 7Fh to 0h because a 14-bit binary down counter is used. When the glitch exceeds 127 pulses, the upper 7 bits take precedence and fill 128 pulses of the same width in different locations. Generating the pulse-train output requires the following equation: Time slot (Fts) and one cycle of frequency (F14).

```
Fdp (Distribution pulse frequency)=XTAL/128 (Hz)
Fts (Time slot frequency) = XTAL/128 (Hz)
F14 (a cycle/frequency) = XTAL /16384 (Hz)
```

When the 6-bit data is 00h, the PWM output is Low. The maximum value is 3Fh and emits High DC-level output.

A selected PWM cycle/frequency is shown in the following equation:

```
F6 (a cycle/frequency) = XTAL/16/64 (Hz)
```

Figures 17 and 18 illustrate various timing pulses and resultant frequencies for the 6-bit and 14-bit PWMs.

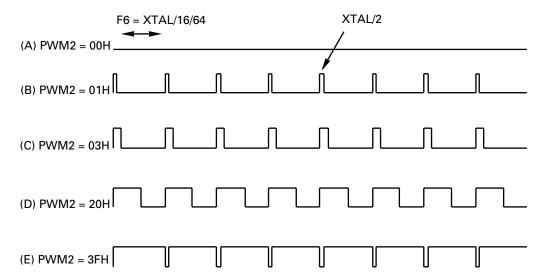


Figure 17 Pulse Width Modulator Timing Diagram, 6 Bit

PS001300.TV/C1000 Proliminary 73

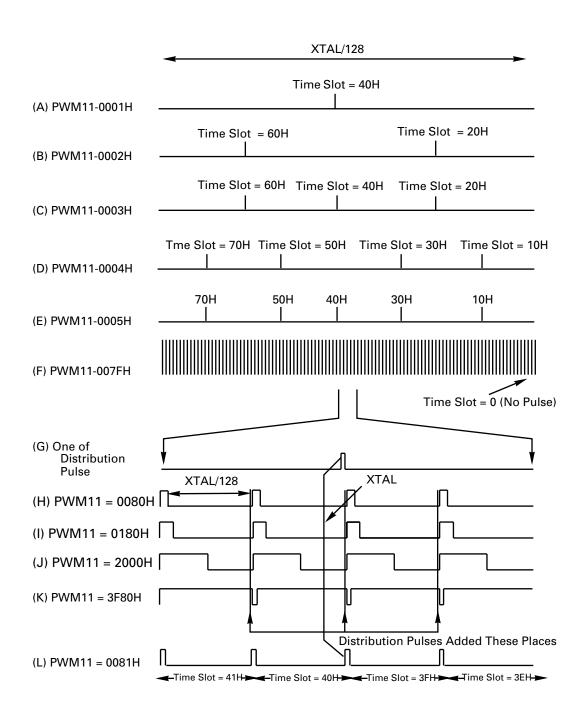


Figure 18 Pulse Width Modulator Timing Diagram, 14-Bit

PS001200_TV/C1000 Proliminary 74

Tables 53 through 66 contain data register information for registers PWM1 -PWM11.

Table 53 PWM 1 Data Register 02h: Bank B (PWM1)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	×	х	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R W		Return to 0 No effect
PWM 1 Value	5,4,3,2,1,0	R/W		

Table 54 PWM 2 Data Register 03h: Bank B (PWM2)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	x	×	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W Value	Description
Reserved	7, 6	R W	Return to 0 No effect
PWM 2 Value	5,4,3,2,1,0	R/W	

Table 55 PWM 3 Data Register 04h: Bank B (PWM3)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

DC004200 TVC4000

Z90255 ROM and Z90251 OTP 32 KB Television Controller with OSD

Bit/ Field	Bit Position	R/W Value	Description
Reserved	7, 6	R W	Return to 0 No effect
PWM 3 Value	5,4,3,2,1,0	R/W	

Table 56 PWM 4 Data Register 05h:Bank B (PWM4)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	x	×	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W Value	Description
Reserved	7, 6	R W	Return to 0 No effect
PWM 4 Value	5,4,3,2,1,0	R/W	

Table 57 PWM 5 Data Register 06h: Bank B (PWM5)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W Value	Description
Reserved	7, 6	R W	Return to 0 No effect
PWM 5 Value	5,4,3,2,1,0	R/W	

Table 58 PWM 6 (6-bit)Data Register 07h: Bank B (PWM6)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	x	0	0	0	0	0	0

1 R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description	
Reserved	7, 6	R W		Return to 0 No effect	
PWM 6 Value	5,4,3,2,1,0	R/W			

Table 59 PWM 7 Data Register 08h: Bank B (PWM7)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R W		Return to 0 No effect
PWM 7 Value	5,4,3,2,1,0	R/W		

Table 60 PWM 8 Data Register 09h: Bank B (PWM8)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset x x 0 0 0 0								0
Note: R = Read W = Write X = Indeterminate								

PS001200-TVC1099 Proliminary

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R W		Return to 0 No effect
PWM 8 Value	5,4,3,2,1,0	R/W		

Table 61 PWM 9 Data Register 0Ah: Bank B (PWM9)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	x	0	0	0	0	0	0
Note: R = Read W = Write X = Indeterminate								

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R W		Return to 0 No effect
PWM 9 Value	5,4,3,2,1,0	R/W		

Table 62 PWM 10 Data Register 0Bh: Bank B (PWM10)

Bit	7	6	5	4	3	2	1	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	Reset x x 0 0 0 0								
Note: R = Read W = Write X = Indeterminate									

Bit/ Field	Bit Position	R/W	Value	Description	
Reserved	7, 6	R W		Return to 0 No effect	
PWM 10 Value	5,4,3,2,1,0	R/W			

Table 63 PWM 6 (14-bit) High Data Register 08h: Bank F (PWM6H)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	x	0	0	0	0	0	0
Note: R = Read W = Write X = Indeterminate								

Bit/ Field	Bit Position	R/W	Value	Description	
Reserved	7, 6	R W		Return 0 No effect	
PWM 6 Bits 13 - 8	5,4,3,2,1,0	R/W			

Table 64 PWM 6 (14-bit) Low Data Register 09h: Bank F (PWM6L)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Note: R = Read W = Write X = Indeterminate								

Bit/ Field	Bit Position	R/W	Value	Description
PWM 6 Bits 7 - 0	7, 6, 5,4,3,2,1,0	R/W		

Table 65 PWM 11 High Data Register 00h: Bank B (PWM11H)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	×	х	0	0	0	0	0	0
Note: R = Read W = Write X = Indeterminate								

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R		Return 0
		W		No effect
PWM 11 Bits 13 - 8	5,4,3,2,1,0	R/W		

Table 66 PWM 11 Low Data Register 01h: Bank B (PWM11L)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Note: R =	Note: R = Read W = Write X = Indeterminate							

Bit/ Field	Bit Position	R/W	Value	Description
PWM 11 Bits 7 - 0	7, 6, 5,4,3,2,1,0	R/W		

7.3 Digital/Analog Conversion with PWM

The televison OSD controller can generate square waves which have fixed periods but variable duty cycles. If this type of signal passes through an RC integrator, the output is a DC voltage proportional to the pulse width of the square wave. Refer to Figure 19, Cases A and B show fixed voltage samples while Case C shows a varying voltage example.

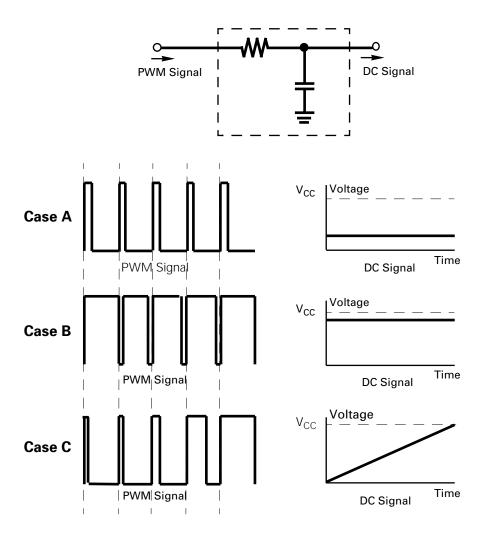


Figure 19 Analog Signals Generated from PWM Signals

PS001200_TV/C1000 Proliminary 9

8 ANALOG - TO -DIGITAL CONVERTER

The Z90255 is equipped with a 4-bit flash analog-to-digital converter (ADC) that can be used as either three or four bit configurations. There are four multiplexed analog-input channels. There are two register addresses, one for 3-bit (Table 67) ADC (3ADC_DTA: 00h: Bank C), and one for 4-bit (Table 68) ADC (4ADC_DTA: 01h: Bank F). Because no default is set, system software must configure the control register for the preferred ADC.

Converted 3-bit data is available as bits 0, 1, and 2 of the 3-bit ADC data register.

Converted 4-bit data is available as bits 0, 1, 2, and 3 of the 4-bit ADC data register.

Figure 20 illustrates four input pins (P60/ADC3, P61/ADC2, P41/ADC1, and P62/ADC0) which function as analog-input channels and as digital I/O ports. To support the analog function, the digital ports must be configured as analog through software. Analog/digital selection is controlled by bits 4 and 3 of the 3-bit ADC Data Register, and by bits 5 and 4 of 4-bit ADC Data Register.

- If ADC Input Selection equals 00, ADC0 is selected; this value is the default following POR.
- If ADC Input Selection equals 01, ADC1 is selected.
- If ADC Input Selection equals 10, ADC2 is selected.
- If ADC Input Selection equals 11, ADC3 is selected.

Sampling occurs at one-eighth of an ADC-clock tick. One ADC-clock tick equals one-half, one-third, or one-quarter of a system-clock (SCLK) tick, as set by 3ADC_DTA(6,5) for 3-bit or 4ADC_DTA (7,6) for 4-bit. If ADC speed bits are set to 00, the ADC is not operative; this is the default value following POR. If these bits equal 01, ADC speed is based on one-half of a system-clock tick, SCLK/2. If these bits equal 10, ADC speed is based on one-third of a system-clock tick, SCLK/3. If these bits equal 11, ADC speed is based on one-quarter of a system-clock tick, SCLK/4.

Table 67 3-Bit ADC Data Register 00h: Bank C (3ADC_DTA)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	Х	0	0	0	0	х	Х	х

Note: R = Read W = Write X = Indeterminate

Bit/Field	Bit Position	R/W	Value	Description
Reserved	7	R		Return 1
		W		No effect
ADC Speed	6, 5	R/W	00	No ADC - POR
			01	SCLK/2
			10	SCLK/3
			11	SCLK/4
ADC Input Selection	4, 3	R/W	00	Select ADC0 - POR
			01	Select ADC 1
			10	Select ADC 2
			11	Select ADC 3
ADC Data	2, 1, 0	R/W		Digitized data from selected ADC input

Table 68 4-Bit ADC Data Register 01h: Bank F (4ADC_DTA)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	х	х	х	х

Note: R = Read W = Write X = Indeterminate

Bit/Field	Bit Position	R/W	Value	Description
ADC Speed	7, 6	R/W	00	No ADC - POR
			01	SCLK/2
			10	SCLK/3
			11	SCLK/4
ADC Input Selection	5, 4	R/W	00	Select ADC0 - POR
			01	Select ADC 1
			10	Select ADC 2
			11	Select ADC 3
ADC Data	3, 2, 1, 0	R/W		Digitized data from selected ADC input

P41 must be set to input mode to select ADC1.

ADC Block Diagram

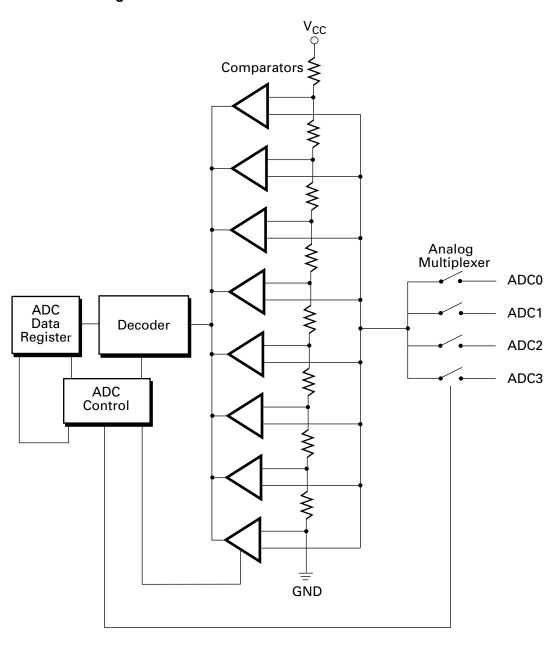


Figure 20 ADC Block Diagram

9 ELECTRICAL CHARACTERISTICS

9.1 Absolute Maximum Ratings

Stress exceeding the levels listed in the Operational Limits can cause permanent damage to the device. These limits represent stress limits only, not optimal operating levels: Exposure to maximum rating conditions for extended periods can affect device reliability.

Table 69 Operational Limits

Symbol	Parameters	Min	Max	Units	Notes
V _{CC}	Power Supply Voltage	-0.3	+7	V	
V _I	Input Voltage	-0.3	V _{CC} +0.3	V	
Vo	Output Voltage	-0.3	V _{CC} +0.3	V	
I _{OH}	Output Current - High		-10	mA	One pin
I _{OH}	Output Current - High		-100	mA	Total, all pins
I _{OL}	Output Current - Low		20	mA	One pin
I _{OL}	Output Current - Low		200	mA	Total, all pins
T _A	Operating Temperature	0	70	οС	
T _{STG}	Storage Temperature	-55	150	οС	

A typical value is 25°C. Minimum and maximum values are 0°C and 70°C respectively.

9.2 DC Characteristics

Table 70 DC Characteristics

Symbol	Parameter	Min	Typical	Max	Units	Conditions
V _{CC}	Power Supply Voltage	4.5	5.00	5.5	V	
V _{IH}	Input Voltage High	0.7V _{CC}		V _{CC}	V	
V _{IL}	Input Voltage Low	- 0.3		0.2V _{CC}	V	
V _{IHC}	Input XTAL/Oscillator In High	0.7V _{CC}		V_{CC}	V	
V _{ILC}	Input XTAL/Oscillator In Low	-0.3		0.2V _{CC}	V	
V _{OH_ST} ¹	Output Voltage High	V _{CC} -0.4	4.75		V	I _{OH} = -2.00mA
V _{OL_ST} ¹	Output Voltage Low		0.16	0.4	V	I _{OL} = 2.00mA
V _{oh_le} 1	Output Voltage High			V _{CC} - 0.4	V	I _{OL} = -0.98mA
V _{oh_le} 1	Output Voltage Low	0.4			V	I _{OL} = 0.66mA
V _{oh_le} ²	Output Voltage High	V _{CC} - 0.4			V	I _{OL} = -0.18mA
V _{oh_le} ²	Output Voltage Low			0.4	V	I _{OL} = 0.18mA
V _{HY}	Schmitt Hysteresis	0.1V _{CC}	8.0		V	
I _{IR}	Reset Input Current		- 170	- 250	uA	V _{RL} =0V
I _{IL}	Input Leakage	-3.0	0.01	3.0	uA	ov, v _{cc}
I _{OL}	Tri-State Leakage	-3.0	0.02	3.0	uA	ov, v _{cc}
I _{CC}	Supply Current		25	40	mA	All inputs at rail; outputs floating
I _{CC1}	Halt Mode Current		3.2	6	mA	All inputs at rail; outputs floating
I _{CC2}	Stop Mode Current		25	50	uA	All inputs at rail; outputs floating

Notes:

- 1. ST = standard drive, le = low EMI drive
- 2. For XTAL2 and OSDX2

PS001200_TVC1000 Proliminary

9.3 AC Characteristics

The numbers in Table 71 correspond to the numbered signal segments in Figure 21.

Table 71 AC Characteristics

No.	Symbol	Parameter	Min	Max	Unit
1	ТрС	Input Clock Period	166	1000	ns
2	T _R C, T _F C	Clock Input Rise And Fall Time		25	ns
3	T _W C	Input Clock Width	35		ns
4	T_WHsync_INL	Hsync Input Low Width	70		ns
5	T_WHsync_INH	Hsync Input High Width	ЗТрС		
6	TpHsync _{IN}	Hsync Input Period	8TpC		
7	T_R Hsync $_{IN}$, T_F Hsync $_{IN}$	Hsync Input Rise Fall Time		100	ns
8	T_WIL	Interrupt Request Input Low	70		ns
9	T _W IH	Interrupt Request Input High	3ТрС		
10	T _D POR	Power-On Reset Delay	25	100	ms
11	T _D LVIRES	Low Voltage Detect To Internal Reset Condition	200		ns
12	T _W RES	Reset Minimum Width	5TpC		
13	T_DH_SOI	H _{sync} Start To OSDX2 Stop	2TpV	3TpV	
14	T_DH_SOH	H _{sync} Start To OSDX2 Start		1TpV	

9.4 Timing Diagram

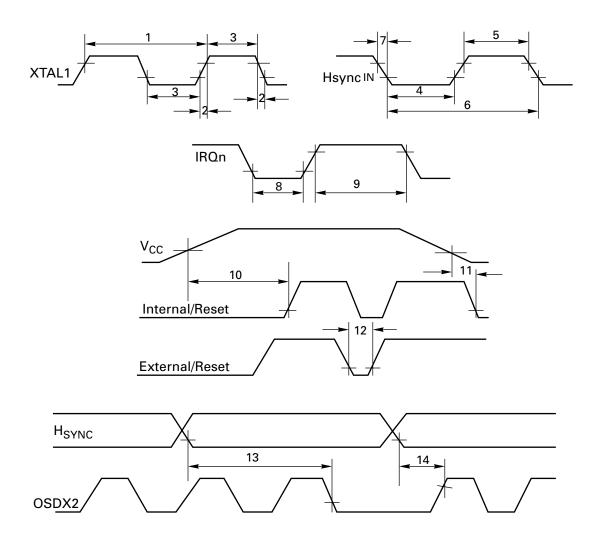


Figure 21 Timing Requirements of External Inputs

PS001200-TVC1000 Proliminary 99

10 PACKAGING

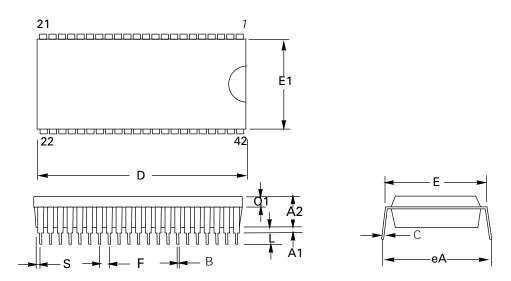


Figure 22 42-Lead Shrink Dual-in-line Package (SDIP)

Table 72 Package Dimensions

Symbol	Millin	meter	Inch		
Зушьог	Min	Max	Min	Max	
A1	0.51		.020		
A2		4.32		.170	
В	0.38	0.56	.015	.022	
B1	0.76	1.27	.030	.050	
С	0.20	0.30	.008	.012	
D	36.70	36.96	1.445	1.455	
E	15.24	15.88	.600	.625	
E1	13.72	14.22	.540	.560	
F	1.78	TYP	.070	TYP	
eA	15.49	16.76	.610	.660	
L	3.05	3.43	.120	.135	
Q1	1.65	1.91	.065	.075	
S	0.51	0.76	.020	.030	

PS001200_TVC1099 Proliminary

11 Ordering Information

Part	PSI	Description
Z90251	Z9025106PSC	OTP TV Controller
Z90255	Z9025506PSC Rxxxx*	Masked ROM TV Controller
Z9025900ZEM	Z9025900ZEM	Emulator/Programmer
Z9020900TSC	Z9020900TSC	Protopak
* xxxx is a unique ROM n	umber assigned to each customer code	

12 ROM Code Submission

ROM Code Submission Instructions

ROM Code can be submitted on ZiLOG's web site at http://www.zilog.com.

Top Mark Information

Mark Permanency: 3X soak into Alpha 2110 at 63° to 70°C, for 30 seconds duration each soak. Mechanical brush after each soak.

13 Customer Feedback Form

Z90255 Product Specification

If there are any problems while operating this product, or any inaccuracies in the specification, please copy and complete this form, then mail or fax it to ZiLOG. Suggestions welcome!

Customer Information

Name	Country
Company	Phone
Address	Fax
City/State/Zip	E-Mail

Product Information

Serial # or Board Fab #/Rev. #	
Software Version	
Document Number	
Host Computer Description/Type	

Return Information

ZiLOG

System Test/Customer Support 910 E. Hamilton Avenue, Suite 110, MS 4–3

Campbell, CA 95008

Fax: (408) 558-8536 Email: tools@zilog.com

Problem Description or Suggestion

steps leading up to the occurrence of the problem. Attach additional pages as necessary.		