

#### PRODUCT SPECIFICATION

# Z86127

LOW-COST DIGITAL
TELEVISION CONTROLLER (LDTC)

#### **FEATURES**

# 8-Bit CMOS Microcontroller for Consumer Television Applications.

- 64-Pin DIP Package
- Low-Cost
- Low Power Consumption
- Fast Instruction Pointer 1.5 µs @ 4 MHz
- Two Standby Modes STOP and HALT
- Low Voltage Detection/Voltage Sensitive Reset
- 35 Input/Output Lines
- Port 2 (8-Bit Programmable I/O) and Port 3 (2-Bit Input, 3-Bit Output) Register Mapped Ports.
- Port 5 (8-Bit LED Drive Output) and Port 6 (6-Bit Input and Tri-State Comparator AFC Input) Memory Mapped I/O Ports.
- All Digital CMOS Levels Schmitt-Triggered
- 8 Kbytes of ROM
- 236 Bytes of RAM
- Two Programmable 8-Bit Counter/Timers Each With 6-Bit Programmable Prescaler.
- Six Vectored, Priority Interrupts from Six Different Sources

- Clock Speed up to 4 MHz
- On-Chip Oscillator that Accepts a Crystal, Ceramic Resonator, LC, or External Clock Drive.
- Permanently Enabled
   Watch-Dog/Power-On Reset Timer

#### **On-Screen Display Controller**

- 4K x 6-Bit Character Generator ROM
- 160 x 7-Bit Video RAM
- Mask Programmable 128-Character Set Displayed in an 8-Row x 20-Column Format, 12 x 15 Pixel Character Cell, Capable of Supporting English, Korean, Chinese, and Japanese High Resolution Characters.
- Fully Programmable Color Attributes Including Row Character, Row Background/Fringes, Frame Background/Position, Bar Graph Color Change, and Character Size.
- Programmable Display Position and Character Size Control.
- One Pulse Width Modulator (14-Bit Resolution) for Voltage Synthesis Tuner Control.
- Five Pulse Width Modulators (8-Bit Resolution) for Picture Control.
- Three Pulse Width Modulators (6-Bit Resolution) for Audio Control.

#### **GENERAL DESCRIPTION**

The Z86127 Low-Cost Digital Television Controller (LDTC) introduces a new level of sophistication to single-chip architecture. The Z86127 is a member of the Z8® single-chip microcontroller family with 8 Kbytes of ROM and 236 bytes of RAM. The device is housed in a 64-Pin DIP

package, in which only 52 are active, and are CMOS compatible. The LDTC offers mask programmed ROM which enables the Z8 microcontroller to be used in a high-volume production application device embedded with a custom program (customer supplied program).



#### **GENERAL DESCRIPTION** (Continued)

Zilog's LDTC offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption. The device provides an ideal performance and reliability solution for consumer and industrial television applications.

The Z86127 architecture is characterized by utilizing Zilog's advanced Superintegration™ design methodology. The device has an 8-bit internal data path controlled by a Z8 microcontroller and On-Screen Display (OSD) logic circuits/ Pulse Width Modulators (PWM). On-chip peripherals include two register mapped I/O ports (Port 2 and 3), interrupt control logic (one software, two external and three internal interrupts), and a standby mode recovery input port (Port 3, P30).

The OSD control circuits support 8 rows by 20 columns of characters. The character color is specified by row. One of the eight rows is assigned to show two kinds of colors for bar type displays such as volume control. The OSD is capable of displaying high resolution (11 x 15 dot pattern) characters.

A 14-bit PWM port provides enough voltage resolution for a voltage synthesizer tuning system. Three 6-bit PWM ports are used for controlling audio signal levels. Five 8-bit PWM ports are used to vary picture levels. The Z86127 have 27 I/O pins dedicated to input and output for LDTC applications demanding powerful I/O capabilities. These lines are grouped into four ports, and are configurable under software control to provide timing, status signals, parallel I/O and an address/data bus for interfacing to external memory.

There are three basic address spaces available to support this wide range of configurations: Program Memory, Video RAM, and Register File. The Register File is composed of 236 bytes of general-purpose registers, two I/O Port registers, 15 control and status registers and three reserved registers.

To unburden the program from coping with the real-time problems such as counting/timing and data communication, the Z86127 offers two on-chip counter/timers with a large number of user selectable modes.

#### Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

| Connection | Circuit         | Device          |  |  |
|------------|-----------------|-----------------|--|--|
| Power      | V <sub>cc</sub> | V <sub>po</sub> |  |  |
| Ground     | v∞<br>GND       | V <sub>ss</sub> |  |  |



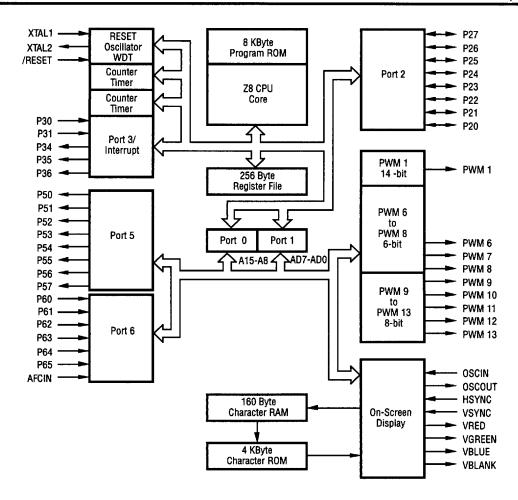



Figure 1. Functional Block Diagram

#### PIN CONFIGURATION

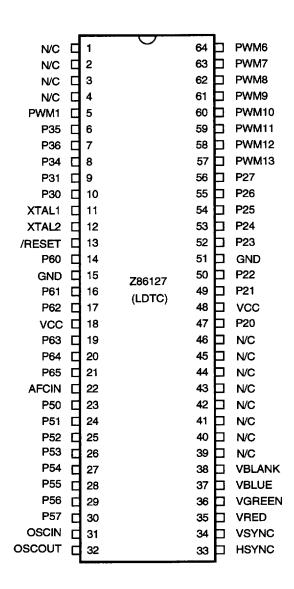



Figure 2. 64-Pin Mask-ROM Plastic DIP

# **%ZiLO**5

### **PIN IDENTIFICATION**

#### 64-Pin DIP Z86127

| Pin   | Name                       | Function                            | Direction |
|-------|----------------------------|-------------------------------------|-----------|
| 1     | N/C                        | No Connection                       |           |
| 2     | N/C                        | No Connection                       |           |
| 3     | N/C                        | No Connection                       |           |
| 4     | N/C                        | No Connection                       |           |
| 5     | PWM1                       | Pulse Width Modulator 1             | Output    |
| 6, 7  | P35-P36                    | Port 3, Pins 5, 6                   | Output    |
| 8     | P34                        | Port 3, Pin 4                       | Output    |
| 9     | P31                        | Port 3, Pin 1                       | Input     |
| 10    | P30                        | Port 3, Pin 0                       | Input     |
| 11    | XTAL1                      | Crystal Oscillator                  | Input     |
| 12    | XTAL2                      | Crystal Oscillator                  | Output    |
| 13    | /RESET                     | System Reset                        | Input     |
| 14    | P60                        | Port 6, Pin 0                       | Input     |
| 15    | GND                        | Ground                              | Input     |
| 16    | P61                        | Port 6, Pin 1                       | Input     |
| 17    | P62                        | Port 6, Pin 2                       | Input     |
| 18    | V <sub>cc</sub><br>P63-P65 | Power Supply                        | Input     |
| 19-21 | P63-P65                    | Port 6, Pins 3, 4, 5                | Input     |
| 22    | AFC <sub>IN</sub>          | AFC Voltage Level                   | Input     |
| 23-30 | P50-P57                    | Port 5, Pins 0, 1, 2, 3, 4, 5, 6, 7 | Output    |
| 31    | OSC <sub>IN</sub>          | Video Dot Clock Osc                 | Input     |
| 32    | OSCOUT                     | Video Dot Clock Osc                 | Output    |
| 33    | H <sub>SYNC</sub>          | Horizontal Sync                     | Input     |
| 34    | V <sub>SYNC</sub>          | Vertical Sync                       | Input     |
| 35    | Vred                       | Video Red                           | Output    |
| 36    | Vgreen                     | Video Green                         | Output    |
| 37    | Vblue                      | Video Blue                          | Output    |
| 38    | Vblank                     | Video Blank                         | Output    |
| 39-46 | N/C                        | No Connection                       |           |
| 47    | P20                        | Port 2, Pin 0                       | In/Output |
| 48    | V <sub>cc</sub>            | Power Supply                        | Input     |
| 49,50 | PŽ1-P22                    | Port 2, Pins 1, 2                   | In/Output |
| 51    | GND                        | Ground                              | Input     |
| 52-56 | P23-P27                    | Port 2, Pins 3, 4, 5, 6, 7          | In/Output |
| 57    | PWM13                      | Pulse Width Modulator 13            | Output    |
| 58    | PWM12                      | Pulse Width Modulator 12            | Output    |
| 59    | PWM11                      | Pulse Width Modulator 11            | Output    |
| 60    | PWM10                      | Pulse Width Modulator 10            | Output    |
| 61    | PWM9                       | Pulse Width Modulator 9             | Output    |
| 62    | PWM8                       | Pulse Width Modulator 8             | Output    |
| 63    | PWM7                       | Pulse Width Modulator 7             | Output    |
| 64    | PWM6                       | Pulse Width Modulator 6             | Output    |

#### PIN DESCRIPTION

XTAL1, XTAL2 (time-based input, output, respectively). These pins connect to the internal parallel-resonant clock crystal (4 MHz max) oscillator circuit with 2 capacitors to GND. XTAL1 can also be used as an external clock input.

/AS Address Strobe (output, active Low). /AS is pulsed once at the beginning of each machine cycle. Address output is through Port 0 and Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the high impedance state along with Port 0 and Port 1, Data Strobe and Read/Write.

/DS Data Strobe (output, active Low). /DS is active once for each external memory transfer. For READ operations, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates the output data is valid.

**R//W** Read/Write (output, Write active Low). R//W signal is Low when the DTC is writing to the external program or data memory.

**SCLK** System Clock (output). SCLK is the internal system clock. It can be used to clock external glue logic.

**H**<sub>sync</sub> (input, Schmitt-triggered, CMOS level). Horizontal Sync is an input pin that accepts an externally generated Horizontal Sync signal of either negative or positive polarity.

V<sub>sync</sub> (input, Schmitt-triggered, CMOS level). Vertical Sync is an input pin that accepts an externally generated Vertical Sync signal of either negative or positive polarity.

OSC<sub>IN</sub>, OSC<sub>OUT</sub> (Video Oscillator input, output, respectively). Oscillator input and output pins for on-screen display circuits. These pins connect to an inductor and two capacitors to generate the character dot clock (typically around 6 MHz). The dot clock frequency determines the character pixel width and phase synchronized to H<sub>SYNC</sub>.

**Vblank** Video Blank (output). CMOS output, programmable polarity. Used as a superimpose control port to display characters from video RAM. The signal controls Y signal output of the CRT and turns off the incoming video display while the characters in video RAM are superimposed on the screen. The red, green, and blue outputs drive the three elect.on guns on the CRT directly, while the blank output turns off the Y signal.

**Vblue** Video Blue (output). CMOS Output of the Blue video signal (B-Y) and is programmable for either polarity.

**Vgreen** Video Green (output). CMOS Output of the Green video signal (G-Y) and is programmable for either polarity.

**Vred** *Video Red* (output). CMOS Output of the Red video signal (R-Y) and is programmable for either polarity.

**Port 2** (P27-P20). Port 2 is an 8-bit port, CMOS compatible, bit programmable for either input or output. Input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either push pull or open-drain (Figure 3).

**Port 3** (P30, P31, P34-P36). Port 3, P30 input, is read directly. If appropriately enabled, a negative edge event is latched in IRQ3 to initiate an IRQ3 vectored interrupt. An application could place the device in STOP mode when P30 goes Low (in the IRQ3 interrupt routine). P30 initiates a Stop-Mode Recovery when it subsequently goes High. Port 3, P31 are read directly. If appropriately enabled, a negative edge event is latched in IRQ2 to initiate an IRQ2 vectored interrupt. P31 High is signified as the  $T_{\rm IN}$  signal to Timer1. Port 3, P36 can be used as a general-purpose output or as an output for  $T_{\rm out}$  (from Timer1 or Timer2) or SCLK (Figure 4).

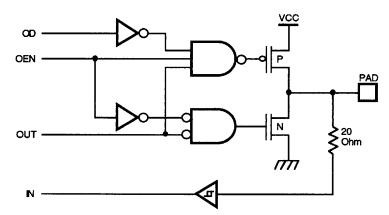
**Port 5** (P57-P50). Port 5 is an 8-bit, CMOS compatible, Output Port. The output ports can directly sink 10 mA at 1.5 Volt V<sub>OL</sub>. They are typically used to drive multiplexed LED displays (Figure 5).

**Port 6** (P65-P60). Port 6 is a 6-bit, Schmitt-triggered CMOS compatible, input port. The outputs of the AFC comparators internally feed into the Port 6, bit 6 and bit 7 inputs (Figure 6)

 ${\rm AFC_{IN}}$  (Comparator input port, memory mapped). The input signal is supplied to two comparators with VTH1=2/5  $\rm V_{cc}$  and VTH2=3/5  $\rm V_{cc}$  typical threshold voltage. The comparator outputs are internally connected to Port 6, bit 6 and bit 7.  ${\rm AFC_{IN}}$  is typically used to detect AFC voltage level to accommodate digital automatic fine tuning functions (Figure 7).

**Pulse Width Modulator 1** (PWM). PWM1 is typically used as the D/A converter for Voltage Synthesis Tuning systems. It has a 14-bit resolution.


**Pulse Width Modulator 6-8** (PWM). PWM8-PWM6 are Pulse Width Modulators with 6-bit resolution.


Pulse Width Modulator 9-13 (PWM). PWM13-PWM9 are Pulse Width Modulator circuits with 8-bit resolution.



**Pulse Width Modulator 1, 6, 7, 8** (PWM). Can be programmed as general-purpose outputs. PWM 1 is 5 Volt push-pull output, and PWMs 6, 7, 8 are 12 volt open-drain outputs. PWMs 9,10, 11, 13 also open-drain outputs (See Figure 8).

/RESET System Reset. Code is executed from memory address 000CH after the /RESET pin is set to a high level. The reset function is also carried out by detecting a V<sub>cc</sub> transition state (automatic Power-On Reset) so that the external reset pin can be permanently tied to V<sub>cc</sub>. A low level on /RESET forces a restart of the device.





Note: Input/Output, tri-State, Open Drain, Pad Type 5

Figure 3. Port 2 Configuration

# PIN DESCRIPTION (Continued)

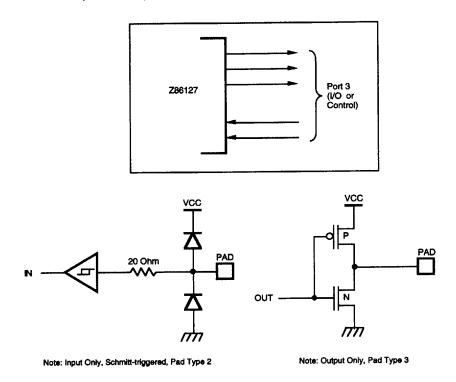
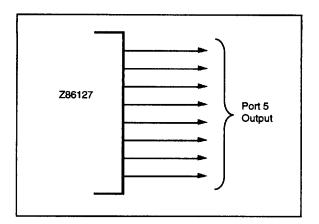




Figure 4. Port 3 Configuration



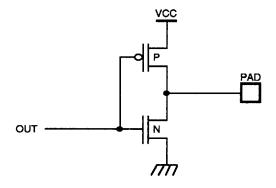
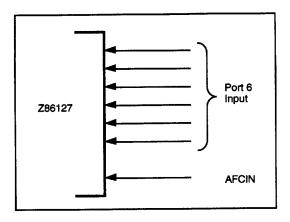




Figure 5. Port 5 Configuration

# PIN DESCRIPTION (Continued)



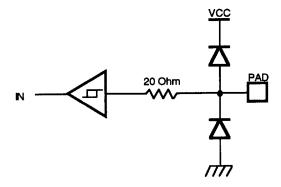



Figure 6. Port 6 Configuration

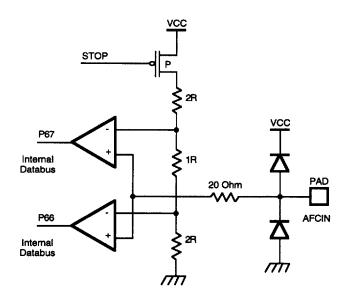



Figure 7. AFC<sub>N</sub> Comparator Circuits

### **FUNCTIONAL DESCRIPTION**

The Z8 LDTC incorporates special functions to enhance the Z8's versatility in consumer, industrial and television control applications.

Pulse Width Modulator (PWM). The LDTC has nine PWM channels (Figure 12). There are three types of PWM circuits: PWM1 (one channel of 14-bit resolution) typically used for Voltage Synthesis Tuning, PWM8-PWM6 (three channels of 6-bit resolution) typically used for audio level control, and PWM13-PWM9 (five channels of 8-bit resolution) typically used for picture level control. The PWM control registers are mapped into external memory and are accessed through LDE and LDEI instructions.

**PWMs 6 through 13.** They have their maximum values (on times) when all 1s are loaded in their PWM Value registers (and minimum value for all 0s). PWM1 has a maximum value for all 0s and minimum value for all 1s.

**On-Screen Display** (OSD). The OSD has a capability of displaying 8 rows by 20 columns of 128 kinds of characters for either high resolution (11 x 15 dots) patterns (Figures 8, 9, 10 and 11).




Figure 8. Pulse Width Modulator Block Diagram

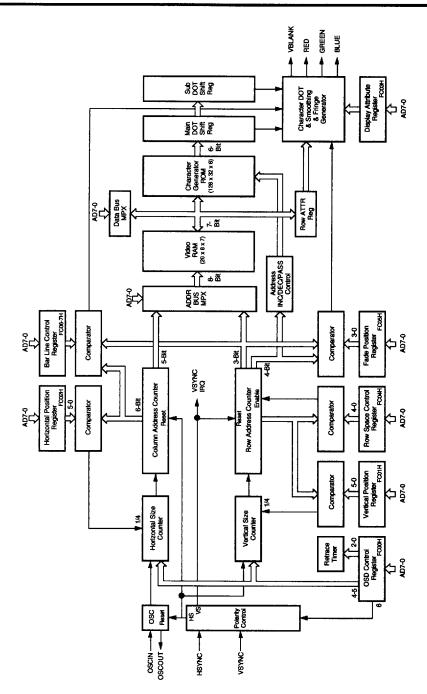



Figure 9. On-Screen Display Block Diagram

The OSD features are as follows:

- Character Color: Seven kinds of color are specified on a row basis.
- Character Pixel Size: Four character pixel sizes are selected for high resolution (1HL, 2HL, 3HL, and 4HL) Horizontal Line (HL).
- Polarity Selections: Can select active low or high for horizontal/vertical sync input and RGB outputs.
- **Display Position:** Can display 64 vertical positions by 4HL units and 64 horizontal positions by a 4-dot clock.
- Inter Row Spacing: Inter row vertical line spacing is set from 2HL to 25HL (17HL for high resolution).
- Fade In/Out Control: Fade position can be determined in vertical direction.
- Bar Line Type Display: One of the rows is selected to display an analog bar line every half column by setting second color with proper character set.
- Fringe Function: Fringe off/on and the color selected.

- Background Color: Eight kinds of color including black background color.
- ON/OFF Control: Character display, backgrounds are turned on and off.
- Number of Display Characters: 8 rows x 20 columns.
- Character Set: 128 (11 x 15 dots).

**Character Generator ROM.** The character generator ROM is organized as 4 Kbytes of six bits. The ROM defines 11 x 15 dot (high resolution) characters.

Video RAM. The Video RAM is organized as 8-row arrays (21 x 7 bits each Figure 10). The first location of each row array contains the attribute for that row. Row attributes include programmable character color, row background color and control for background off/on. The next 20 bytes contains row character data. Each character byte contains the 7-bit ASCII code in order to select one of the 128 displayable characters LDE or LDEI instructions are required to access the Video RAM (Figure 11).



Figure 10. Video RAM Configuration

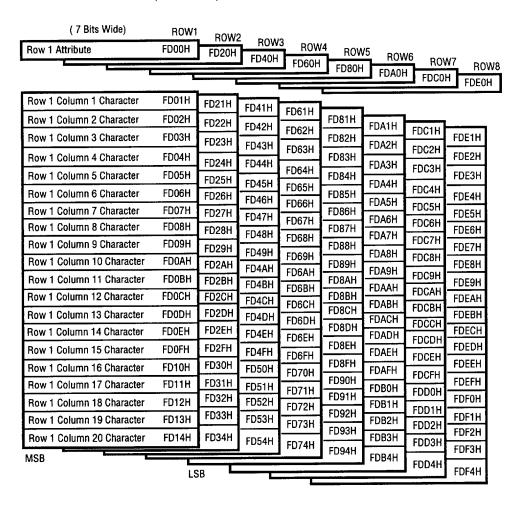



Figure 11. Video RAM Map (Write/Read Registers)



Figure 12a. High Resolution Character ROM Configuration

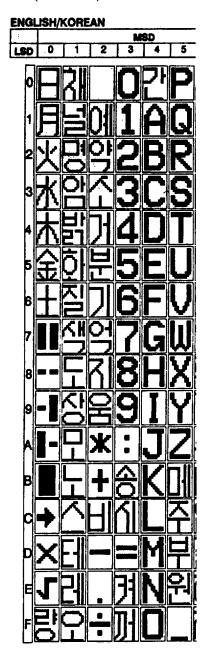



Figure 12b. Zilog's Character ROM



**Program Memory.** The Z86127 program ROM size is 8 Kbytes (Figure 13). The IRQ vector table is located in the lower address space. The vector address is fetched after the corresponding interrupt and program control is passed

to the specified vector address. IRQ1 vector is fixed to  $V_{\text{SYNC}}$  interrupt request and occurs at the leading edge of the filtered  $V_{\text{SYNC}}$  input. Program memory starts at address 000CH after reset.

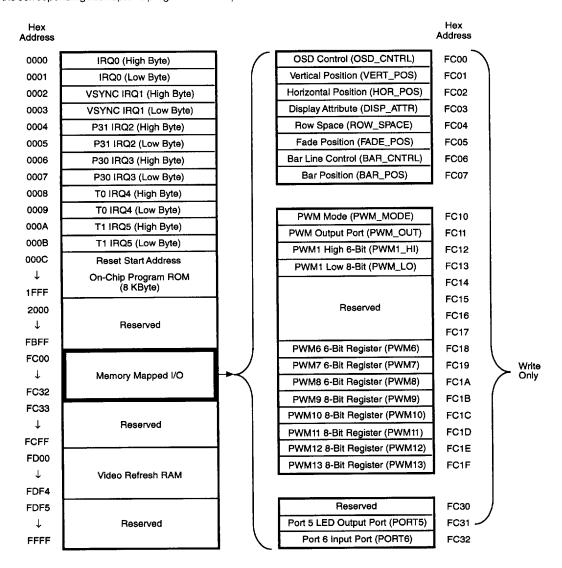



Figure 13. Program Memory

**Memory Mapped Register.** All control registers and I/O ports (except Port 2 and Port 3) are assigned to program memory space. Address space FC00H contains OSD control registers, PWM output registers and Ports 5 and 6 I/O registers. Two bits of the decoded AFC<sub>IN</sub> port are assigned to Port 6 input port. LDE and LDEI instructions are required to transfer data between the Register File and the Memory Mapped Registers.

Register File. A total of 253 byte registers are implemented in the Z8 core. Address 00H, 01H and FOH are reserved. The register file consists of two I/O Port registers, 236

general-purpose registers and 15 control and status registers (Figure 14). The instructions can access registers directly or indirectly with an 8-bit address field. This also allows short 4-bit register addressing using the Register Pointer. In the 4-bit mode, the register file is divided into sixteen working-register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group (Figure 15).

**Note:** Register Bank E0-EF is only accessed through a working register and indirect addressing modes.

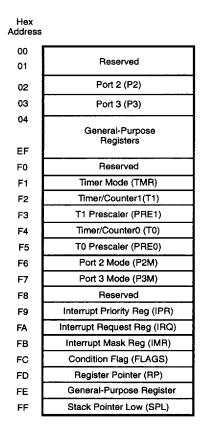



Figure 14. Register File Configuration

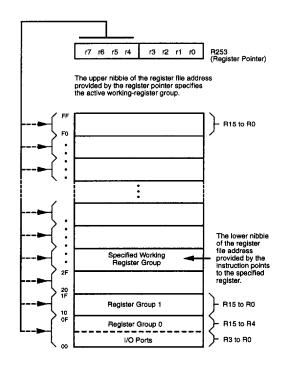



Figure 15. Register Pointer



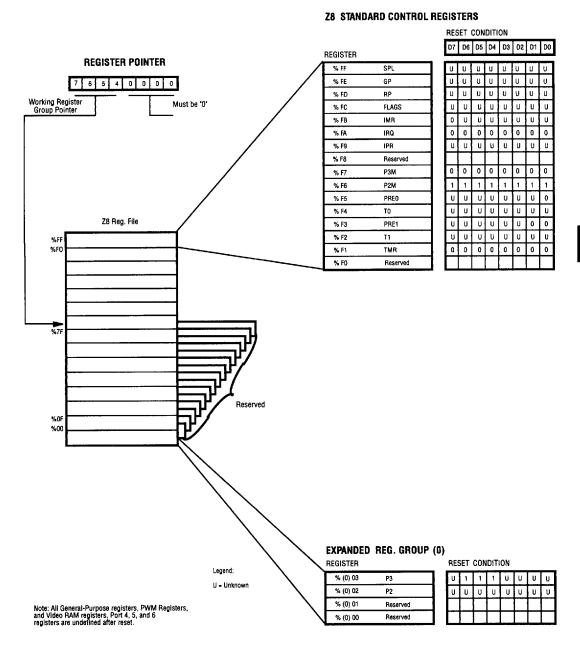



Figure 16. Z86127 Register File Reset Condition

**Stack.** The internal register file is used for the stack. An 8-bit Stack Pointer is used for the internal stack that resides within the 236 general-purpose registers.

**Counter/Timers.** There are two 8-bit programmable counter/timers (T0-T1), each driven by its own 6-bit programmable prescaler (PRE0 and PRE1). The T1 prescaler can be driven by internal or external clock sources; however, the T0 prescaler is driven by the internal clock only (Figure 17).

The counter, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user definable and is the internal microprocessor clock (XTAL clock/4), or an external signal input through Port 3, P31. The counter/timers are programmably cascaded by connecting the T0 output to the input of T1.

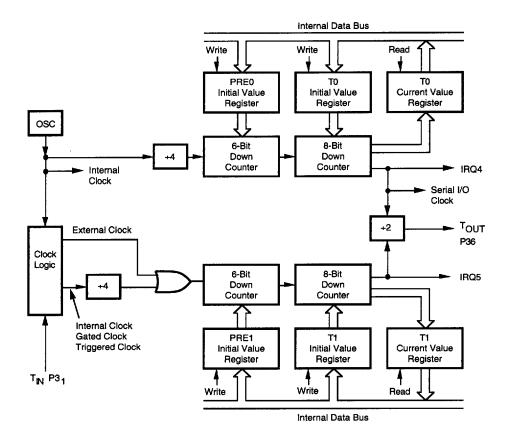



Figure 17. Counter/Timer Block Diagram



**Interrupts.** The LDTC has six different interrupts from six different sources. These interrupts are maskable and prioritized (Figure 18). The six sources are divided as

follows: two sources are claimed by Port 3 (P30, P31), one by  $\rm V_{SYNC'}$  two by the counter/timers, and one is software triggered only.

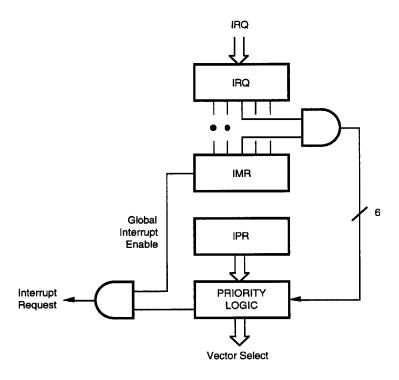



Figure 18. Interrupt Block Diagram

HALT Mode. The Z86127 is driven by two internal clocks, TCLK and SCLK. They both oscillate at the crystal frequency. TCLK provides the clock signal for the counter-timers and the interrupt block. SCLK provides the clock signal for all other CPU blocks. HALT mode turns off the internal CPU clock (SCLK), but not the XTAL oscillation. The counter/timers and external interrupts remain active. The device may be recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT mode. After the interrupt service routine, the program continues from the instruction after the HALT.

**STOP Mode.** The STOP instruction stops crystal oscillation, thereby stopping both SCLK and TCLK. The device ceases to operate. The STOP mode can be released by two methods. The first method is to reset the device. A high input condition on Port 3 P30 is the second method. After releasing the STOP mode by using either one of the two methods, program execution begins at location 000CH. To complete an instruction prior to entering the standby modes, a NOP instruction has to be placed before the HALT or STOP instructions. This is required because of instruction pipelining, i.e.:

FF NOP ; clear the pipeline 6F STOP ; enter STOP mode or

FF NOP ; clear the pipeline 7F HALT ; enter HALT mode

#### Note:

In STOP mode, XTAL2 pin has an internal pull-up on it and OSC<sub>out</sub> has an internal pull-down.

**Clock.** The Z86127 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal is an AT cut, parallel resonant, 4 MHz max with a series resistance (RS) less than or equal to 100 Ohms.

The crystal source is connected across XTAL1 and XTAL2 using the crystal vendor's recommended capacitors (10 pF < CL < 300 pF, where C1=C2=CL) from each pin directly to device ground P15 or P51 (Figure 19).

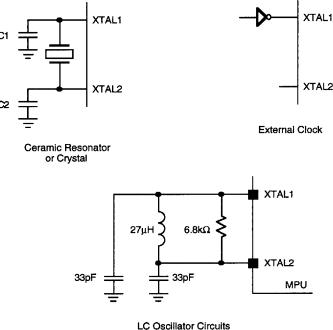



Figure 19. Oscillator Configuration



Watch-Dog Timer (WDT). The Z86127 is equipped with a permanently enabled Watch-Dog Timer which must be refreshed every 12 ms. Failure to refresh the timer results in a reset of the device. The WDT is permanently enabled and is initially reset on POR. Every subsequent WDT instruction resets the timer. The Watch-Dog Timer may or may not be enabled during the HALT mode. The instruction WDT 4F (HEX) enables the timer during HALT. If the WDH instruction is used, and if the HALT mode is not

released and the Watch-Dog Timer is not retriggered (by the WDT instruction) within 12 ms, a device reset occurs. The WDT instruction affects the Z (Zero), S (Sign), and V (Overflow) flags. WDT does not run during STOP mode.

 $m V_{cc}$  Voltage Sensitive Reset (VSR). Reset is globally driven if  $\rm V_{cc}$  is below the specified voltage (Figure 20).

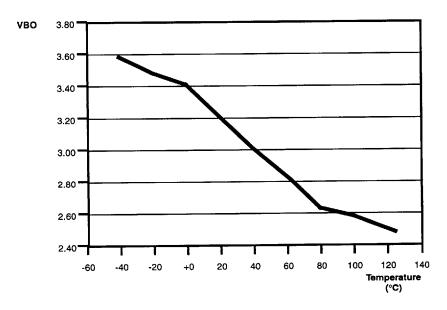



Figure 20. Voltage Sensitive Reset vs Temperature

#### **ABSOLUTE MAXIMUM RATINGS**

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| Symbol                | Parameters            | Min              | Max                              | Units | Notes       |
|-----------------------|-----------------------|------------------|----------------------------------|-------|-------------|
| V <sub>cc</sub>       | Power Supply Voltage* | -0.3             | +7                               | V     |             |
| V, C                  | Input Voltage         | -0.3             | $V_{co} + 0.3$                   | V     |             |
| V,                    | Input Voltage         | -0.3             | $V_{cc} + 0.3$<br>$V_{cc} + 0.3$ | ٧     | [1]         |
| V <sub>o</sub>        | Output Voltage        | -0.3             | V <sub>cc</sub> +8.0             | ٧     | [2]         |
| I <sub>OH</sub>       | Output Current High   |                  | <u>–</u> 10                      | mA    | 1 pin       |
| I <sub>OH</sub>       | Output Current High   |                  | -100                             | mA    | All total   |
| I <sub>OL</sub>       | Output Current Low    |                  | 20                               | mA    | 1 pin       |
| I <sub>OL</sub>       | Output Current Low    |                  | 40                               | mA    | [3] (1 pin) |
| 1                     | Output Current Low    |                  | 200                              | mA    | Ali total   |
| 'OL<br>T <sub>a</sub> | Operating Temperature | †                |                                  |       |             |
| T <sub>STG</sub>      | Storage Temperature   | - <del>6</del> 5 | +150                             | С     |             |

#### Notes:

#### STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 21).

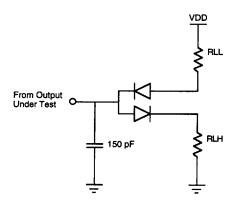



Figure 21. Test Load Diagram

<sup>[1]</sup> Port 2 open-drain

<sup>[2]</sup> PWM open-drain outputs

<sup>[3]</sup> Port 5 Voltage on all pins with respect to GND.

<sup>†</sup> See Ordering Information

# **⊘2iL0**5

**CAPACITANCE**  $T_A = 25^{\circ}\text{C}; V_{CC} = \text{GND} = 0\text{V}; \text{Freq} = 1.0 \text{ MHz}; \text{unmeasured pins to GND}.$ 

| Parameter                           | Max | Units |
|-------------------------------------|-----|-------|
| Input capacitance                   | 10  | pF    |
| Output capacitance                  | 20  | ρF    |
| I/O capacitance                     | 25  | pF    |
| AFC <sub>IN</sub> input capacitance | 10  | рF    |

DC CHARACTERISTICS  $T_A = 0^{\circ}\text{C}$  to +70°C;  $V_{CC} = +4.5\text{V}$  to +5.5V;  $F_{OSC} = 4 \text{ MHz}$ 

| Sym                                                         | Parameter                                                                       | T <sub>A</sub> =0°C<br>Min                  | to +70°C<br>Max                                                | Typical<br>@ 25°C            | Units          | Conditions                                                                                                             |
|-------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------|
| V <sub>IL</sub><br>V <sub>ILC</sub><br>V <sub>IH</sub>      | Input Voltage Low<br>Input Voltage XTAL/Osc In Low<br>Input Voltage High        | 0<br>0.7 V <sub>cc</sub>                    | 0.2 V <sub>cc</sub><br>0.07 V <sub>cc</sub><br>V <sub>cc</sub> | 1.48<br>0.98<br>3.0          | V<br>V<br>V    | External Clock Generator Driven                                                                                        |
| V <sub>IHC</sub><br>V <sub>HY</sub><br>V <sub>PU</sub>      | Input Voltage XTAL/Osc in High<br>Schmitt Hysteresis<br>Maximum Pull-up Voltage | 0.8 V <sub>cc</sub><br>0.1 V <sub>cc</sub>  | V <sub>cc</sub><br>12                                          | 3.2<br>0.8                   | V<br>V<br>V    | External Clock Generator Driven [2]                                                                                    |
| V <sub>OL</sub>                                             | Output Voltage Low                                                              |                                             | 0.4<br>0.4<br>0.4<br>1.5                                       | 0.16<br>0.19<br>0.19<br>1.00 | V<br>V<br>V    | I <sub>OL</sub> =1.00 mA<br>I <sub>OL</sub> =3.2 mA, [1]<br>I <sub>OL</sub> =0.75 mA [2]<br>I <sub>OL</sub> =10 mA [1] |
| V <sub>00-01</sub><br>V <sub>01-11</sub><br>V <sub>OH</sub> | AFC Level 01 In<br>AFC Level 11 In<br>Output Voltage High                       | 0.5 V <sub>cc</sub><br>V <sub>cc</sub> -0.4 | 0.45 V <sub>cc</sub><br>0.75 V <sub>cc</sub>                   | 1.9<br>3.12<br>4.75          | V<br>V         | I <sub>OH</sub> =-0.75 mA                                                                                              |
| I <sub>IR</sub><br>I <sub>IL</sub><br>I <sub>OL</sub>       | Reset Input Current<br>Input Leakage<br>Tri-State Leakage                       | 3.0<br>3.0                                  | -80<br>3.0<br>3.0                                              | -46<br>0.01<br>0.02          | μΑ<br>μΑ<br>μΑ | V <sub>RL</sub> =0V<br>0V,V <sub>CC</sub><br>0V,V <sub>CC</sub>                                                        |
| <sub>CC</sub><br>  <sub>CC1</sub><br>  <sub>CC2</sub>       | Supply Current                                                                  |                                             | 20<br>6<br>10                                                  | 13.2<br>3.2<br>0.1           | mA<br>mA<br>μA | All inputs at rail<br>All inputs at rail<br>All inputs at rail                                                         |

#### Notes:

[1] Port 5 [2] PWM open-drain

# **AC CHARACTERISTICS** Timing Diagrams

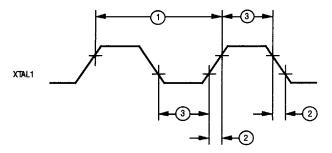



Figure 22. External Clock

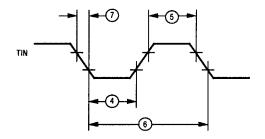



Figure 23. Counter Timer

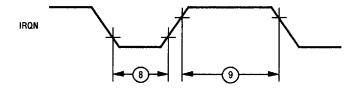



Figure 24. Interrupt Request

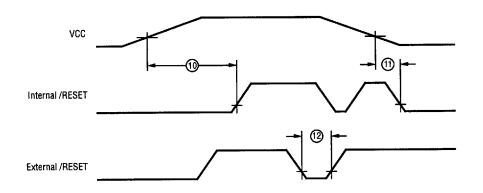



Figure 25. Power-On Reset

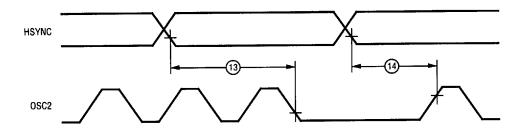



Figure 26. On-Screen Display



AC CHARACTERISTICS  $T_A = 0^{\circ}$  C to +70° C;  $V_{CC} = +4.5$ V to +5.5V;  $F_{OSC} = 4$  MHz,

| No | Symbol      | Parameter                                        | Min  | Max  | Unit           |
|----|-------------|--------------------------------------------------|------|------|----------------|
| 1  | TpC         | Input Clock Period                               | 250  | 1000 | ns             |
| 2  | TrC,TfC     | Clock Input Rise and Fall                        |      | 15   | ns             |
| 3  | TwC         | Input Clock Width                                | 125  |      | ns             |
| 4  | TwTinL      | Timer Input Low Width                            | 70   |      | ns             |
| 5  | TwTinH      | Timer Input High Width                           | ЗТрС |      |                |
| 6  | TpTin       | Timer Input Period                               | 8TpC |      |                |
| 7  | TrTin,TfTin | Timer Input Rise and Fall                        |      | 100  | ns             |
| 8a | TwlL        | Int Req Input Low                                | 70   |      | ns             |
| 8b | TwlL        |                                                  | 3TpC |      | ~ <del>*</del> |
| 9  | TwlH        | Int Request Input High                           | 3TpC |      |                |
| 10 | TdPOR       | Power-On Reset Delay                             | 25   | 100  | ms             |
| 11 | TdLVIRES    | Low Voltage Detect to                            | 200  |      | ns             |
|    |             | Internal RESET Condition                         |      |      |                |
| 12 | Twres       | Reset Minimum Width                              | 5TpC |      |                |
| 13 | TdHsOI      | H <sub>SYNC</sub> Start to V <sub>osc</sub> Stop | 2TpV | 3TpV |                |
| 14 | TdHsOh      | H <sub>SYNC</sub> End to V <sub>osc</sub> Start  | ,    | 1TpV |                |
| 15 | TdWDT       | WDT Refresh Time                                 |      | 12   | ms             |

Note:

Refer to DC Characteristics for details on switching levels.



#### **SUMMARY**

Input/Output Circuits

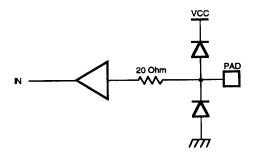



Figure 27. Input Only (Pad Type 1)

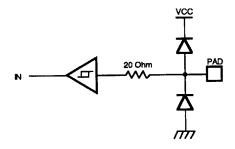



Figure 28. Input Only, Schmitt-Triggered (Pad Type 2)

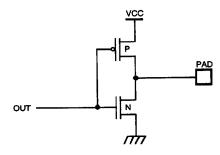



Figure 29. Output Only (Pad Type 3)

#### **SUMMARY**

Input/Output Circuits (Continued)

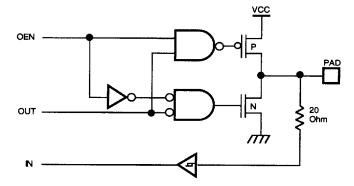



Figure 30. Input/Output Tri-State (Pad Type 4)

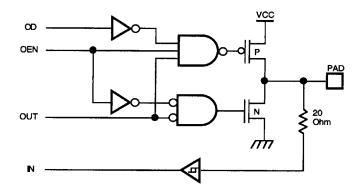



Figure 31. Input/Output, Tri-state, Open-drain (Pad Type 5)

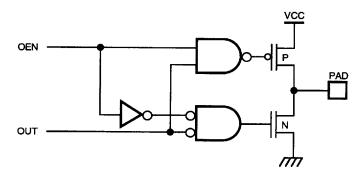



Figure 32. Output Only, Tri-State (Pad Type 6)

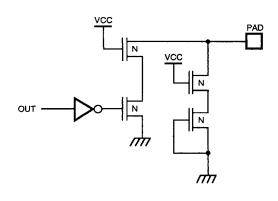



Figure 33. Output Only, 12-Volt open-drain (Pad Type 7)

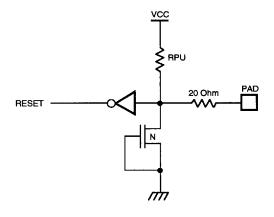



Figure 34. Reset Input Circuit (Pad Type 8)

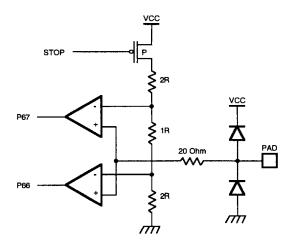
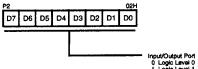



Figure 35. AFC Input Circuit (Pad Type 9)

#### **Mapping of Symbolic Pad Types to Pin Functions**


| Pin Name                                                   | Pad Type |
|------------------------------------------------------------|----------|
| XTAL1, OSC <sub>IN</sub>                                   | 1        |
| XTAL2, OSC                                                 | *        |
| /RESET                                                     | 8        |
| P20-P27                                                    | 5        |
| P30-P31                                                    | 2        |
| P34-P36                                                    | 3        |
| P50-P57                                                    | 3        |
| P60-P65                                                    | 2        |
| AFC,,                                                      | 9        |
| AFC <sub>IN</sub><br>H <sub>SYNC</sub> , V <sub>SYNC</sub> | 2        |
| VRED, VBLUE, VGREEN,                                       | 3        |
| VBLANK                                                     | 3        |
| PWM1                                                       | 3        |
| PWM [6 -13]                                                | 7        |

Note

<sup>\*</sup>High gain start, low gain run amplifier circuit

### DTC CONTROL REGISTER DIAGRAMS

Port Registers





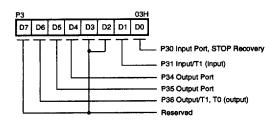



Figure 37. Port 3 Register (Read Only P31-P30) (Write Only P34-P36)

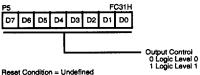



Figure 38. Port 5 Register (Write Only)

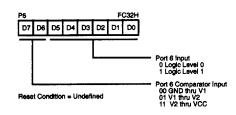



Figure 39. Port 6 Register (Write Only)

# DTC CONTROL REGISTER DIAGRAMS

**PWM Registers** 

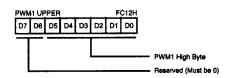



Figure 40. PWM 1 High Value (Write Only)

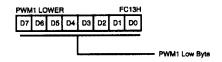



Figure 41. PWM 1 Low Value (Write Only)

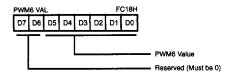



Figure 42. PWM 6 Value (Write Only)

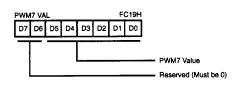



Figure 43. PWM 7 Value (Write Only)

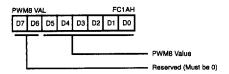



Figure 44. PWM 8 Value (Write Only)

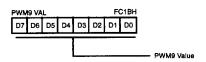



Figure 45. PWM 9 Value (Write Only)

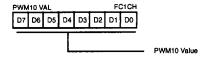



Figure 46. PWM 10 Value (Write Only)

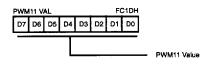



Figure 47. PWM 11 Value (Write Only)

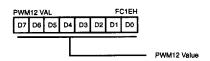



Figure 48. PWM 12 Value (Write Only)

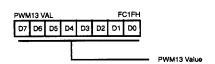



Figure 49. PWM 13 Value Register (Write Only)



#### DTC CONTROL REGISTER DIAGRAMS

PWM Registers (Continued)

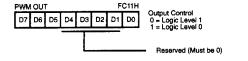



Figure 50. PWM Port Output Register (Write Only)

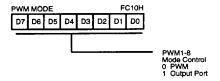



Figure 51. PWM Mode Register (Write Only)

#### DTC CONTROL REGISTER DIAGRAMS

Z8 Microcontroller Control Register Diagrams

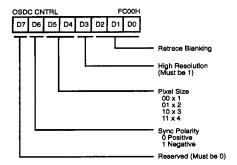



Figure 52. OSD Control Register (Write Only)

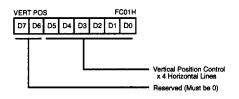



Figure 53. OSD Vertical Position Register (Write Only)

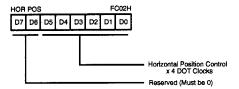



Figure 54. OSD Horizontal Position Register (Write Only)

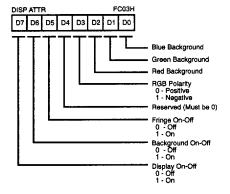



Figure 55. OSD Display Attribute Register (Write Only)



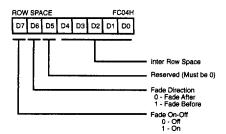



Figure 56. OSD Row Space Register (Write Only)

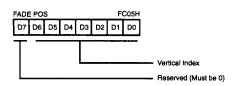



Figure 57. OSD Fade Position Register (Write Only)

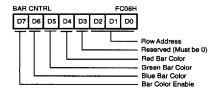



Figure 58. OSD Bar Control Register (Write Only)

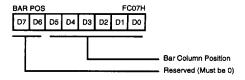



Figure 59. OSD Bar Position Register (Write Only)

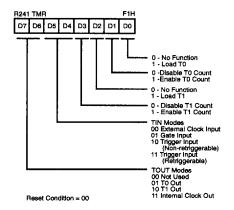



Figure 60. Timer Mode Register (F1H; Read/Write)



Figure 61. Counter/Timer1 Register (F2H; Read/Write)

### DTC CONTROL REGISTER DIAGRAMS

Z8 Microcontroller Control Register Diagrams (Continued)

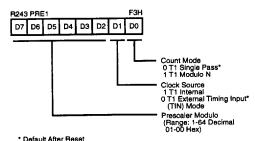
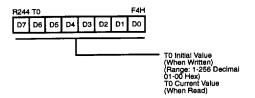
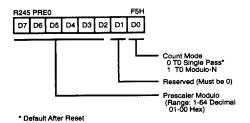




Figure 65. Port 2 Mode Register (F6H; Write Only)

Delauk Alter Heset

Figure 62. Prescaler 1 Register


(F3H; Read/Write)



R247 P3M D7 D6 D5 D4 D3 D2 D1 DO 0 - Port 2 Open-Drain 1 - Port 2 Push-Pull Reserved (Must be 0) 0 P32 - Input P35 - Output 1 Reserved 00 P33 - Input 11 Reserved P34 - Output 0 P31 - Input (TIN) P36 - Output (TOUT) 0 P30 - Input Reserved (Must be 0)

Figure 63. Counter/Timer 0 Register (F4H; Write Only)

Figure 66. Port 3 Mode Register (F7H; Write Only)



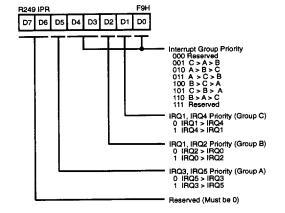



Figure 64. Prescaler 0 Register (F5H; Read/Write)

Figure 67. Interrupt Priority Register (F9H; Write Only)



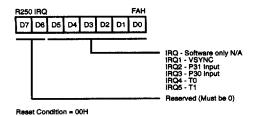



Figure 68. Interrupt Request Register (FAH; Write Only)

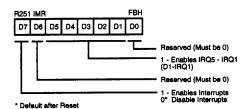



Figure 69. Interrupt Mask Register (FBH; Read/Write)

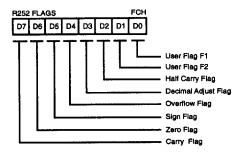



Figure 70. Flag Register (FCH; Read/Write)

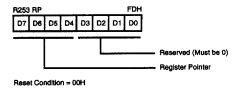



Figure 71. Register Pointer (FDH; Read/Write)

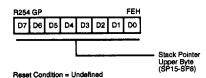



Figure 72. Stack Pointer (FEH; Read/Write)

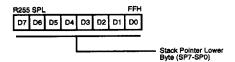



Figure 73. Stack Pointer (FFH; Read/Write)

#### **INSTRUCTION SET NOTATION**

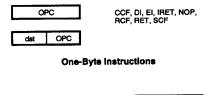
**Addressing Modes.** The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

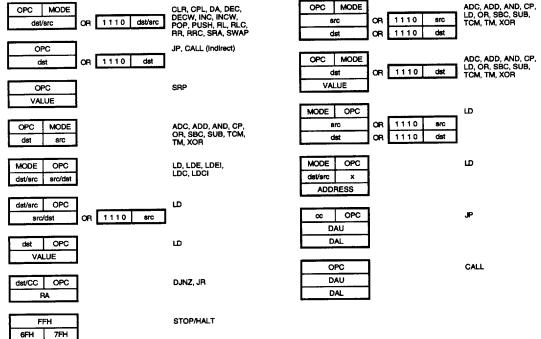
| Symbol     | Meaning                                        |
|------------|------------------------------------------------|
| IRR        | Indirect register pair or indirect working-    |
|            | register pair address                          |
| Irr        | Indirect working-register pair only            |
| X          | Indexed address                                |
| DA         | Direct address                                 |
| RA         | Relative address                               |
| IM         | Immediate                                      |
| R          | Register or working-register address           |
| r          | Working-register address only                  |
| IR         | Indirect-register or indirect                  |
|            | working-register address                       |
| <b>i</b> r | Indirect working-register address only         |
| RR         | Register pair or working register pair address |

**Symbols.** The following symbols are used in describing the instruction set.

| Symbol | Meaning                              |
|--------|--------------------------------------|
| dst    | Destination location or contents     |
| src    | Source location or contents          |
| CC     | Condition code                       |
| @      | Indirect address prefix              |
| SP     | Stack Pointer                        |
| PC     | Program Counter                      |
| FLAGS  | Flag register (Control Register 252) |
| RP     | Register Pointer (R253)              |
| IMR    | Interrupt mask register (R251)       |

**Flags.** Control register (R252) contains the following six flags:


| Symbol        | Meaning                             |
|---------------|-------------------------------------|
| С             | Carry flag                          |
| Z             | Zero flag                           |
| S             | Sign flag                           |
| ٧             | Overflow flag                       |
| D             | Decimal-adjust flag                 |
| Н             | Half-carry flag                     |
| Affected flag | gs are indicated by:                |
| 0             | Clear to zero                       |
| 1             | Set to one                          |
| *             | Set to clear according to operation |
| _             | Unaffected                          |
| x             | Undefined                           |




# **CONDITION CODES**

| Value | Mnemonic | Meaning                        | Flags Set             |
|-------|----------|--------------------------------|-----------------------|
| 1000  | T        | Always True (Never False)      |                       |
| 0111  | С        | Carry                          | C = 1                 |
| 1111  | NC       | No Čarry                       | C = 0                 |
| 0110  | Z        | Zero                           | Z = 1                 |
| 1110  | NZ       | Not Zero                       | <b>Z</b> = 0          |
| 1101  | PL       | Plus                           | S = 0                 |
| 0101  | MI       | Minus                          | S = 1                 |
| 0100  | OV       | Overflow                       | V = 1                 |
| 1100  | NOV      | No Overflow                    | V = 0                 |
| 0110  | EQ       | Equal                          | Z = 1                 |
| 1110  | NE       | Not Equal                      | Z = 0                 |
| 1001  | GE       | Greater Than or Equal          | (S XOR V) = 0         |
| 0001  | LT       | Less than                      | (S XOR V) = 1         |
| 1010  | GT       | Greater Than                   | [Z OR (S XOR V)] = 0  |
| 0010  | LE       | Less Than or Equal             | [Z OR (S XOR V)] = 1  |
| 1111  | UGE      | Unsigned Greater Than or Equal | C = 0                 |
| 0111  | ULT      | Unsigned Less Than             | C = 1                 |
| 1011  | UGT      | Unsigned Greater Than          | (C = 0 AND Z = 0) = 1 |
| 0011  | ULE      | Unsigned Less Than or Equal    | (C OR Z) = 1          |
| 0000  | F        | Never True (Always False)      | <u> </u>              |

#### **INSTRUCTION FORMATS**





Two-Byte Instructions

Three-Byte Instructions

notation "addr (n)" is used to refer to bit (n) of a given

## **INSTRUCTION SUMMARY**

**Note:** Assignment of a value is indicated by the symbol " ← ". For example:

dst (7)

dst ← dst + src

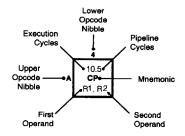
indicates that the source data is added to the destination data and the result is stored in the destination location. The

refers to bit 7 of the destination operand.

operand location. For example:

# **INSTRUCTION SUMMARY** (Continued)

| Address Flags Instruction Mode Opcode Affected                                   |           |                 |   |   |   |   |   |   |
|----------------------------------------------------------------------------------|-----------|-----------------|---|---|---|---|---|---|
| and Operation                                                                    | dst src   | Byte (Hex)      | C | Z | s | ٧ | D | Н |
| ADC dst, src<br>dst←dst + src +C                                                 | †         | 1[]             | * | * | * | * | 0 | * |
| ADD dst, src<br>dst←dst + src                                                    | t         | 0[]             | * | * | * | * | 0 | * |
| AND dst, src<br>dst←dst AND src                                                  | Ť         | 5[]             | _ | * | * | 0 | - | - |
| CALL dst<br>SP←SP – 2<br>@SP←PC,<br>PC←dst                                       | DA<br>IRR | D6<br>D4        | - | - | - | - | - | _ |
| CCF<br>C←NOT C                                                                   |           | ÉF              | * | - | - | - | - | - |
| CLR dst<br>dst←0                                                                 | R<br>IR   | B0<br>B1        | - | - | - |   | _ | - |
| <b>COM</b> dst<br>dst←NOT dst                                                    | R<br>IR   | 60<br>61        | - | * | * | 0 | _ | - |
| CP dst, src<br>dst - src                                                         | †         | A[ ]            | * | * | * | * | - | - |
| <b>DA</b> dst<br>dst←DA dst                                                      | R<br>IR   | 40<br>41        | * | * | * | Х | _ | - |
| DEC dst<br>dst←dst – 1                                                           | R<br>IR   | 00<br>01        | - | * | * | * | - | - |
| <b>DECW</b> dst<br>dst←dst – 1                                                   | AR<br>IR  | 80<br>81        | - | * | * | * | - | - |
| <b>DI</b><br>IMR(7)←0                                                            |           | 8F              | - | - | - | - | - | - |
| <b>DJNZ</b> r, dst<br>r←r - 1<br>if r ≠ 0<br>PC←PC + dst<br>Range: +127,<br>-128 | RA        | rA<br>r = 0 - F | - | _ | - | - | - |   |
| <b>EI</b><br>IMR(7)←1                                                            |           | 9F              | - | _ | - | - | - | - |
| HALT                                                                             |           | 7F              | _ | _ | _ | _ |   | _ |


| Instruction and Operation                                           |                            | dress<br>de<br>t src         | Opcode<br>Byte (Hex                                                               | A | ags<br>ffec |   | D |   |   |
|---------------------------------------------------------------------|----------------------------|------------------------------|-----------------------------------------------------------------------------------|---|-------------|---|---|---|---|
| INC dst<br>dst←dst + 1                                              | r<br>R<br>IR               |                              | rE<br>r = 0 - F<br>20<br>21                                                       | - | *           |   |   | - | _ |
| INCW dst<br>dst←dst + 1                                             | RR<br>IR                   |                              | A0<br>A1                                                                          | - | *           | * | * | - | - |
| IRET FLAGS←@SP; SP←SP + 1 PC←@SP; SP←SP + 2; IMR(7)←1               |                            |                              | BF                                                                                | * | *           | * | * | * | * |
| <b>JP</b> cc, dst<br>if cc is true<br>PC←dst                        | DA                         |                              | cD<br>c = 0 - F<br>30                                                             | _ | -           |   | _ | - | - |
| JR cc, dst<br>if cc is true,<br>PC←PC + dst<br>Range: +127,<br>–128 | RA                         |                              | cB<br>c=0-F                                                                       | - | -           |   | - | - | = |
| <b>LD</b> dst, src<br>dst←src                                       | r r R r X r Ir R R R IR IR | IR R r X r Ir r R IR IM IM R | rC<br>r8<br>r9<br>r = 0 - F<br>C7<br>D7<br>E3<br>F3<br>E4<br>E5<br>E6<br>E7<br>F5 | - |             | - | - | - | _ |
| LDC dst, src                                                        | r                          | Irr                          | C2                                                                                | _ | _           | - | _ | - | _ |
| LDCI dst, src<br>dst←src<br>r←r +1;<br>rr←rr + 1                    | lr                         | Irr                          | СЗ                                                                                | - | _           | - | _ | - | - |

# **INSTRUCTION SUMMARY** (Continued)

| Instruction<br>and Operation      | Addi<br>Mode<br>dst | 8        | Opcode<br>Byte (Hex) | Aff | igs<br>ect<br>Z |   | v | D | н | Instruction<br>and Operation                                                                | Address<br>Mode<br>dst src                           | Opcode<br>Byte (Hex)                                   | Af           | ags<br>fect<br>Z |                 | v               | D            | н            |
|-----------------------------------|---------------------|----------|----------------------|-----|-----------------|---|---|---|---|---------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------|------------------|-----------------|-----------------|--------------|--------------|
| NOP                               |                     |          | FF                   | _   | _               | - | _ | _ | - | STOP                                                                                        |                                                      | 6F                                                     | -            | -                | -               | -               | -            | -            |
| OR dst, src<br>dst←dst OR src     | †                   |          | 4[]                  | _   | [               | [ | 0 | - | _ | SUB dst, src                                                                                | †                                                    | 2[]                                                    | *            | *                | *               | *               | 1            | *            |
| POP dst<br>dst←@SP;<br>SP←SP + 1  | R<br>IR             |          | 50<br>51             | -   | _               | - |   | - | _ | dst←dst←src  SWAP dst                                                                       | R<br>IR                                              | F0<br>F1                                               | ×            | *                | *               | X               | _            |              |
| PUSH src<br>SP←SP – 1;<br>@SP←src |                     | R<br>IR  | 70<br>71             | -   | -               | - | - | - | _ | 7 4 3 0                                                                                     |                                                      |                                                        |              |                  |                 |                 |              | _            |
| RCF<br>C←0                        |                     |          | CF                   | 0   | -               | - |   | _ |   | TCM dst, src<br>(NOT dst)<br>AND src                                                        | †                                                    | 6[]                                                    | -            | *                | *               | O               | _            | -            |
| RET<br>PC←@SP;                    |                     | <u> </u> | AF                   | _   | -               | - | _ | _ | _ | TM dst, src<br>dst AND src                                                                  | †                                                    | 7[]                                                    | -            | *                | *               | 0               | -            | -            |
| SP←SP + 2                         |                     |          |                      |     |                 |   |   |   |   | WDH                                                                                         | †                                                    | 4F                                                     | -            | Х                | Х               | Х               | -            | _            |
| RL dst                            | R<br>] IR           |          | 90<br>91             | *   | *               | * | * | - | _ | WDT                                                                                         | t                                                    | 5F                                                     | _            | Х                | Х               | Х               | -            | _            |
| RLC dst                           | R<br>IR             |          | 10<br>11             | *   | *               | * | * | - | - | XOR dst, src<br>dst←dst<br>XOR src                                                          | †                                                    | B[ ]                                                   | -            | *                | *               | 0               | -            | -            |
| RR dst                            | R                   |          | E0<br>E1             | *   | *               | * | * | - | _ | † These instruction<br>are encoded for bre<br>set table above. Th<br>in this table, and its | vity. The first o<br>e second nibb<br>value is found | pcode nibble is<br>ble is expressed<br>in the followin | sfol<br>d sy | ınd ii<br>mbc    | n th            | e in:<br>ally ! | stru<br>by a | ctio<br>ι '[ |
| RRC dst                           | R<br>IR             |          | C0<br>C1             | *   | *               | * | * | _ | _ | applicable address  For example, the omodes r (destination                                  | ing mode pair<br>pcode of an i                       | ADC instruction                                        |              |                  |                 |                 |              |              |
| SBC dst, src<br>dst←dst←src←C     | †                   |          | 3[]                  | *   | *               | * | * | 1 | * | Address Mod                                                                                 | le                                                   |                                                        |              |                  |                 | /er             |              |              |
| SCF<br>C←1                        |                     |          | DF                   | 1   | -               | - | - | - | - | dst si                                                                                      | rc<br>                                               |                                                        |              | pco              | <b>de</b><br>[2 |                 | obl          | <del>,</del> |
| SRA dst                           | R                   |          | D0                   | *   | *               | * | 0 | _ | _ | r Ir                                                                                        |                                                      |                                                        |              |                  | [3              | •               |              |              |
| G (7] 0                           | IR                  |          | D1                   |     |                 |   |   |   |   | R R                                                                                         |                                                      |                                                        |              |                  | [4              | ]               |              |              |
| SRP src                           |                     | lm       | 31                   |     | _               |   | _ | _ |   | R IF                                                                                        | ₹                                                    |                                                        |              |                  | [5              | [               |              |              |
| RP←src                            |                     |          | ٥.                   |     |                 |   |   |   |   | R II                                                                                        | И                                                    |                                                        |              |                  | [6              | i]              |              |              |
|                                   |                     |          |                      |     |                 |   |   |   |   | IR IN                                                                                       | И                                                    |                                                        |              |                  | [7              | ]               |              |              |

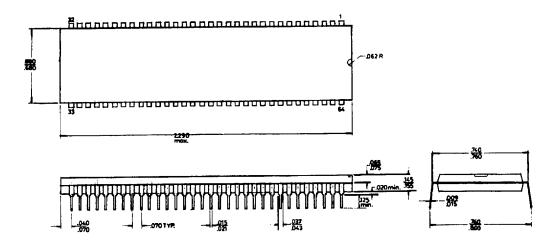
#### **OPCODE MAP**

|                    |     | Lower Nibble (Hex) |                   |             |                   |             |                   |               |                   |          |          |         |              |            |               |           |                    |
|--------------------|-----|--------------------|-------------------|-------------|-------------------|-------------|-------------------|---------------|-------------------|----------|----------|---------|--------------|------------|---------------|-----------|--------------------|
|                    |     | 0                  | 1                 | 2           | 3                 | 4           | 5                 | 6             | 7                 | 8        | 9        | A       | В            | С          | D             | E         | F                  |
|                    | o   | 6.5<br><b>DEC</b>  | 6.5<br><b>DEC</b> | 6.5<br>ADD  | 6.5<br>ADD        | 10.5<br>ADD | 10.5              | 10.5          | 10.5              | 6.5      | 6.5      | 12/10.5 | 12/10.0      | 6.5        | 12.10.0       | 6.5       |                    |
|                    | •   | R1                 | IR1               | r1, r2      | r1, Jr2           | R2, R1      | IR2, R1           | ADD<br>R1, IM | ADD<br>IR1, IM    | r1, R2   | 12. R1   | r1, RA  | JR<br>cc, RA | ri, IM     | JP<br>cc. DA  | INC<br>r1 |                    |
|                    |     | 6.5                | 6.5               | 6.5         | 6.5               | 10.5        | 10.5              | 10.5          | 10.5              | 11, 112  | 12,51    | 111,000 | CC, HA       | 111, IM    | CC, UA        | ï         | $\vdash$           |
|                    | 1   | RLC                | RLC               | ADC         | ADC               | ADC         | ADC               | ADC           | ADC               |          |          |         |              |            | 1             |           | i i                |
|                    |     | R1                 | IR1               | r1, r2      | r1, lr2           | R2, R1      | IR2, R1           | R1, IM        | IR1, IM           |          | 1 1      | 1       |              |            | 111           | -         |                    |
|                    | _   | 6.5                | 6.5               | 6.5         | 6.5               | 10.5        | 10.5              | 10.5          | 10.5              |          |          |         |              | 1 <b>1</b> |               | 1         |                    |
|                    | 2   | INC                | INC               | SUB         | SUB               | SUB         | SUB               | SUB           | SUB               |          | 11       | 11      |              |            | 111           | 1         |                    |
|                    |     | R1                 | IR1               | r1, r2      | r1, lr2           | R2, R1      | IR2, R1           | R1, IM        | IR1, IM           |          |          |         | 1 1          |            |               | 1         |                    |
|                    | 3   | 8.0<br>JP          | 6.1<br>SRP        | 6.5<br>SBC  | 6.5<br><b>SBC</b> | 10.5<br>SBC | 10.5<br>SBC       | 10.5<br>SBC   | 10.5<br>SBC       | 1        |          | 1       | 1 1          |            |               | 1         |                    |
|                    | -   | IRR1               | iM                | r1, r2      | r1, Ir2           | R2, R1      | IR2, R1           | R1, IM        | IR1, IM           | I        | 1 1      |         | 1 <b>I</b>   | 1 1        |               | 1         |                    |
|                    |     | 8.5                | 8.5               | 6.5         | 6.5               | 10.5        | 10.5              | 10.5          | 10.5              | 1        | 11       | 11      |              | <b> </b>   | 111           | 1         | 6.0                |
|                    | 4   | DA                 | DA                | OR          | OR                | OR          | OR                | OR            | OR                | 1        | 1 1      |         |              |            |               | - 1       | WDH                |
|                    |     | R1                 | IR1               | r1, r2      | r1, ir2           | R2, R1      | IR2, R1           | R1, IM        | IR1, IM           | 1        | 1 1      |         | {            | 1 1        | 111           | - 1       | 1 [                |
|                    | _ 1 | 10.5               | 10.5              | 6.5         | 6.5               | 10.5        | 10.5              | 10.5          | 10.5              |          | 11       | 1 1     | i I          |            | 111           | - 1       | 6.0                |
|                    | 5   | POP                | POP               | AND         | AND               | AND         | AND               | AND           | AND               |          | 11       | 1 1     | <b> </b>     | i          | 111           | i         | WDT                |
|                    |     | R1                 | IR1               | r1, r2      | r1, lr2           | R2, R1      | IR2, R1           | R1, IM        | IR1, IM           |          | 1 [      |         |              |            |               | i         | $ldsymbol{\sqcup}$ |
|                    | 6   | 6.5<br><b>COM</b>  | 6.5<br>COM        | 6.5<br>TCM  | 6.5<br>TCM        | 10.5<br>TCM | 10.5              | 10.5          | 10.5              |          | 11       |         |              |            |               |           | 6.0                |
|                    | •   | R1                 | IR1               | r1, r2      | r1, lr2           | R2, R1      | TCM<br>IR2, R1    | TCM<br>R1, IM | TCM<br>IR1, IM    |          | 11       |         | l I          |            | {             | - 1       | STOP               |
| 垩                  |     | 10/12.1            | 12/14.1           | 6.5         | 6.5               | 10.5        | 10.5              | 10.5          | 10.5              |          | 1 I      | 1 1     | }            |            |               | ı         | 7.0                |
| •                  | 7   | PUSH               | PUSH              | TM          | TM                | TM          | TM                | TM            | TM                |          | 1        | 1       |              |            | 1 I I         |           | HALT               |
| Upper Nibble (Hex) |     | R2                 | IR2               | r1, r2      | r1, lr2           | R2, R1      | IR2, R1           | R1, IM        | IR1, IM           |          | 1        |         |              |            | 1 I I         |           |                    |
| Ž                  | _   | 10.5               | 10.5              | 12.0        | 18.0              |             |                   |               |                   | 1        | 11       |         |              |            | 1 1 1         |           | 6.1                |
| 乭                  | 8   | DECW               | DECW              | LDE         | LDEI              | ł           |                   |               |                   |          | 11       | 1 1     |              |            |               |           | DI                 |
| 3                  |     | RR1                | IR1               | r1, lrr2    | Ir1, Irr2         |             |                   |               |                   |          |          | 11      | l I          |            |               |           | -                  |
|                    |     | 6.5<br>RL          | 6.5<br>RL         | 12.0<br>LDE | 18.0<br>LDEI      |             |                   |               |                   |          | 11       |         | ! <b>!</b>   |            |               |           | 6.1<br>El          |
|                    | ٠ ا | R1                 | IR1               | r2, Irr1    | ir2, irr1         |             |                   |               |                   |          | 1 1      |         |              |            |               | - 1       | "                  |
|                    |     | 10.5               | 10.5              | 6.5         | 6.5               | 10.5        | 10.5              | 10.5          | 10.5              |          | l I      | [       |              |            |               | - 1       | 14.0               |
|                    | A   | INCW               | INCW              | CP          | CP                | CP          | CP                | CP            | CP                | ı        | 11       |         | 1            |            |               | 1         | RET                |
|                    |     | RR1                | IR1               | r1, r2      | r1, lr2           | R2, R1      | IR2, R1           | R1, IM        | IR1, IM           | 1        | 11       | 11      |              |            |               |           | L                  |
|                    | _   | 6.5                | 6.5               | 6.5         | 6.5               | 10.5        | 10.5              | 10.5          | 10.5              |          | 11       |         |              | 1          |               |           | 16.0               |
| •                  | В   | CLR                | CLR               | XOR         | XOR               | XOR         | XOR               | XOR           | XOR               | - 1      | 11       | 11      |              | 1          |               | - 1       | IRET               |
|                    |     | R1                 | IR1               | r1, r2      | r1, Ir2           | R2, R1      | IR2, R1           | R1, IM        | IR1, IM           |          | 11       | 1 1     |              |            |               |           |                    |
|                    | .   | 6.5<br>RRC         | 6.5<br>RRC        | 12.0<br>LDC | 18.0<br>LDC1      |             |                   |               | 10.5<br><b>LD</b> |          |          | 1 1     |              |            |               |           | 6.5<br>RCF         |
|                    |     | R1                 | IR1               | r1, Irr2    | Ir1, Irr2         |             |                   |               | r1,x,R2           |          |          | 1 1     |              |            | 111           | - 1       | nor                |
|                    | 1   | 6.5                | 6.5               | 12.0        | 18.0              | 20.0        | <u> </u>          | 20.0          | 10.5              |          | 1 1      | 1 1     |              |            | 111           | - 1       | 6.5                |
| - 1                | י כ | SRA                | SRA               | LDC         | LDCI              | CALL.       |                   | CALL          | LD                | - 1      |          | 1 1     |              | j          |               | 1         | SCF                |
|                    |     | R1                 | IR1               | r1, lrr2    | Ir1, Irr2         | IRR1        |                   | DA            | r2,x,R1           | 1        |          | 1 1     |              | 1          | 1 1           | - 1       |                    |
|                    | E   | 6.5                | 6.5               |             | 6.5               | 10.5        | 10.5              | 10.5          | 10.5              |          |          | 11      | l 1          | 1          |               |           | 6.5                |
|                    | -   | RR                 | RR                | Į           | LD                | LD          | LD                | LD            | LD                | ı        | {        | 11      |              |            |               |           | CCF                |
|                    |     | R1<br>8.5          | IR1<br>8.5        | <u> </u>    | r1, IR2           | R2, R1      | IR2, R1           | R1, IM        | IR1, IM           | - 1      | }        | 11:     |              |            |               | - 1       |                    |
|                    | F   | SWAP               | SWAP              |             | 6.5<br>LD         |             | 10.5<br><b>LD</b> |               | 1                 | - 1      | 11       | 1       |              |            | } <b>I</b> I  | 1         | 6.0<br><b>NOP</b>  |
|                    |     | R1                 | IR1               |             | lr1, r2           |             | R2, IR1           |               | i                 | ¥        | ıv       | ▼       | ♥            | ¥          | 🔻             | ¥         | NOP                |
|                    |     |                    |                   |             |                   |             |                   |               |                   |          | <u> </u> |         |              |            | $\overline{}$ | 二         | _                  |
|                    |     |                    | 3                 | Y<br>2      |                   |             | 3                 | <u> </u>      |                   |          |          | 2       |              |            | 3             |           | 1                  |
|                    |     |                    |                   | _           |                   |             | •                 |               | tes per l         | netri    | tion     | •       |              |            | •             |           | •                  |
|                    |     |                    |                   |             |                   |             |                   | - Sy          | res hai :         | , iou uc |          |         |              |            |               |           |                    |



#### Legend:

R = 8-bit Address r = 4-bit Address R1 or r1 = Dst Address R2 or r2 = Src Address


#### Sequence:

Opcode, First Operand, Second Operand

Note: Blank areas not defined.

\*2-byte instruction appears as a 3-byte instruction

# PACKAGE INFORMATION



64-Pin DIP Package Diagram



#### ORDERING INFORMATION

#### Z86127

## 4 MHz

**64-Pin DIP** Z8612704PSC

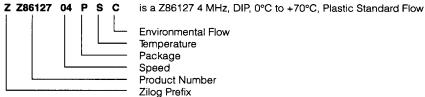
For fast results, contact your Zilog sales office for assistance in ordering the part desired.

#### Package

P = Plastic DIP

#### Temperature

 $S = 0^{\circ}C$  to  $+70^{\circ}C$ 


#### Speed

04 = 4 MHz

#### Environmental

C= Plastic Standard

#### Example:



#### Note:

Four additional Letter/Numbers will be appended to the end of the part number to identify the individual customer's ROM code.