

PRODUCT SPECIFICATION

加急出货

Z8602/14 NMOS Z8[®] 8-BIT MCU KEYBOARD CONTROLLER

FEATURES

- +4.75V to +5.25V Operating Range
- Low-Power Consumption 750 mW (Typical)
- 32 Input/Output Lines

[⊗] Zila

- All Digital Inputs NMOS Levels
- Z8602 = 2 Kbytes of ROM Z8614 = 4 Kbytes of ROM
- 124 Bytes of RAM
- Two Programmable 8-Bit Counter Timer

- Two 6-Bit Programmable Prescaler
- Six Vectored, Priority Interrupts from Six Different Sources
- Clock Speed up to 4 MHz
- On-Chip Oscillator that Accepts a Crystal, Ceramic Resonator or External Clock Drive
- Low EMI Emission

GENERAL DESCRIPTION

The Z8602/14 Keyboard Controller is a member of the Z8® single-chip microcomputer family with 2/4 Kbytes of ROM. This microcontroller offers fast execution, more efficient use of memory, sophisticated interrupt, input/output bit-manipulation capabilities, and easy hardware/software system expansion along with Low cost and Low power consumption. The Z8602/14 is housed in a 40-pin DIP and 44-pin PLCC package, and is manufactured in NMOS technology.

The Z8602/14 architecture is characterized by a flexible I/O scheme, an efficient register, I/O, and a number of ancillary features that are useful in many industrial and advanced scientific applications.

For device applications demanding powerful I/O capabilities, the Z8602/14 fulfills this with 32-pins dedicated to input and output. These lines are grouped into four ports, each port consists of eight lines, and are configurable under software control to provide timing, status signals, and serial or parallel I/O ports. The Z8602/14 offers low EMI emission. This is achieved by means of several modifications in the output drivers and clock circuitry of the device.

There are two basic address spaces which are available to support this wide range of configurations: Program Memory and 124 general-purpose Registers.

The Z8602/14 offers two on-chip counter/timers with a large number of user selectable modes. This unburdens the program from coping with real-time problems such as counting/timing (Figure 1).

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{CC}	V _{DD}
Ground	GND	V _{SS}

GENERAL DESCRIPTION (Continued)

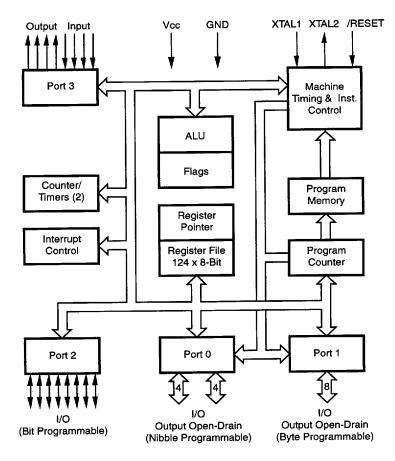
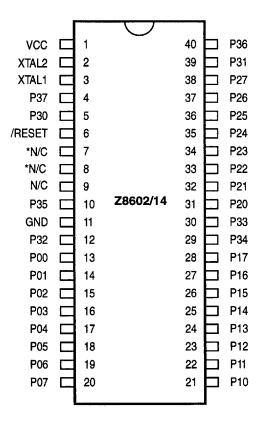



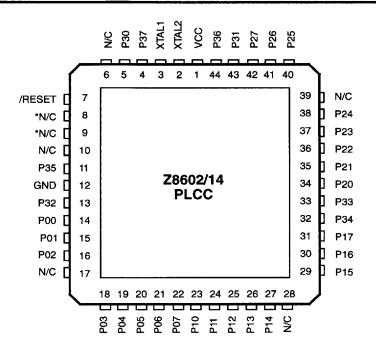
Figure 1. Functional Block Diagram

<u> Asirae</u>

PIN DESCRIPTION

*Note:

Pins 7 and 8 actually are connected to the chip, although used only for testing. These pins *must be used* as floaters by the customer.


PIN DESCRIPTION (Continued)

Pin #	Symbol	Function	Direction
1	V _{CC}	Power Supply	Input
2	XTAL2	Crystal Oscillator Clock	Output
3	XTAL1	Crystal Oscillator Clock	Input
4	P37	Port 3, Pin 7	Output
5	P30	Port 3, Pin 0	Input
6	/RESET	Reset	Input
*7	N/C	Not Connected	
*8	N/C	Not Connected	
9	N/C	Not Connected	
10	P35	Port 3, Pin 5	Output
11	GND	Ground	Input
12	P32	Port 3, Pin 2	Input
13-20	P00-07	Port 0, Pins 0, 1, 2, 3, 4, 5, 6, 7	Input/Output
21-28	P10-17	Port 1, Pins 0, 1, 2, 3, 4, 5, 6, 7	Input/Output
29	P34	Port 3, Pin 4	Output
30	P33	Port 3, Pin 3	Input
31-38	P20-27	Port 2, Pins 0, 1, 2, 3, 4, 5, 6, 7	Input/Output
39	P31	Port 3, Pin 1	Input
40	P36	Port 3, Pin 6	Output

Table 1. 40-Pin DIP Pin Identification

*Note:

Pins 7 and 8 actually are connected to the chip, although used only for testing. These pins *must be used* as floaters by the customer.

*Note:

Pins 8 and 9 actually are connected to the chip, although used only for testing. These pins *must be used* as floaters by the customer.

Pin #	Symbol	Function	Direction	Pin #	Symbol	Function	Direction
1	V _{cc}	Power Supply	Input	14-16	P02/P00	Port 0, Pins 0, 1, 2	In/Output
2	XŤĂL2	Crystal Oscillator Clock	Output	17	N/C	Not Connected	
3	XTAL1	Crystal Oscillator Clock	Input	18-22	P07-P03	Port 0, Pins 3, 4, 5, 6, 7	In/Output
4	P37	Port 3, Pin 7	Output	23-27	P14-P10	Port 1, Pins 0. 1, 2, 3, 4	In/Output
5	P30	Port 3, Pin 0	Input	28	N/C	Not Connected	
6	N/C	Not Connected		29-31	P17-P15	Port 1, Pins 5, 6, 7	In/Output
7	/RESET	Reset	Input	32	P34	Port 3, Pin 4	Output
*8	*N/C	Not Connected		33	P33	Port 3, Pin 3	Input
*9	N/C	Not Connected		34-38	P24-P20	Port 2, Pins 0, 1, 2, 3, 4	In/Output
10	N/C	Not Connected		39	N/C	Not Connected	
11	P35	Port 3, Pin 5	Output	40-42	P27-P25	Port 2, Pins 5, 6, 7	in/Output
12	GND	Ground	Input	43	P31 ·	Port 3, Pin 1	Input
13	P32	Port 3, Pin 2	Input	44	P36	Port 3, Pin 6	Output

Table 2. 44-Pin PLCC Pin Identification

PIN FUNCTIONS

XTAL1, XTAL2 Crystal 1, Crystal 2 (time-based input and output, respectively). These pins connect a parallel-resonant crystal or an external single-phase clock to the on-chip clock oscillator and buffer.

Port 0 (P07-P00). Port 0 is an 8-bit, nibble programmable, bi-directional, NMOS compatible I/O port. These eight I/O lines can be configured under software control as a nibble input port, or as a nibble open-drain output port. When used as an I/O port, inputs are standard NMOS and outputs are open-drain (Figure 4).

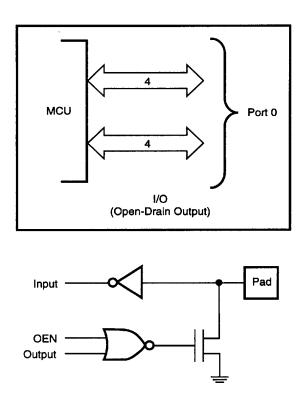


Figure 4. Port 0 Configuration

Port 1 (P17-P10). Port 1 is an 8-bit, byte programmable, bidirectional, NMOS compatible I/O port. These eight I/O lines are configured under software control program as byte input port or as an open-drain output port. When used as an I/O port, inputs are standard NMOS and outputs are open-drain (Figure 5).

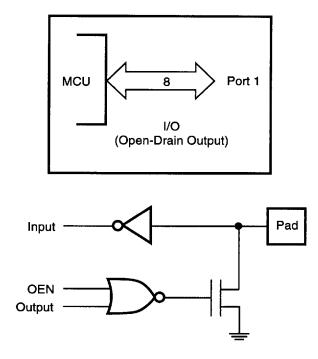


Figure 5. Port 1 Configuration

PIN FUNCTIONS (Continued)

Port 2 (P27-P20). Port 2 is an 8-bit, bit programmable, bi-directional, NMOS compatible I/O port. These eight I/O lines are configured under the software control program

for I/O. Port 2 can be programmed as bit-by-bit independently, as input or output, or configured to provide opendrain outputs (Figure 6).

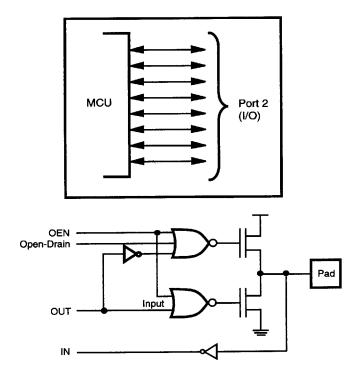
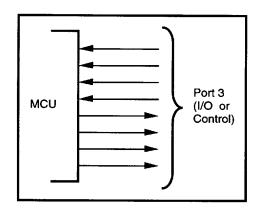



Figure 6. Port 2 Configuration

Port 3 (P37-P30). Port 3 is an 8-bit, NMOS compatible fourfixed-input and four-fixed-output I/O port. These eight I/O lines have four-fixed-input (P33-P30) and four-fixed-output (P37-P34) ports. Port 3 outputs have the capability of driving LEDs directly with a pull-up resistor (output voltage of Port 3 is 0.8V @ 10 mA).

Port 3 is configured under software control to provide the following control functions: four external interrupt request signals (IRQ3-IRQ0); timer input and output signals (T_{IN} and T_{OUT} - Figure 7).

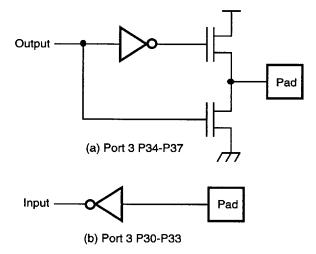


Figure 7. Port 3 Configuration

SPECIAL FUNCTIONS

Program Memory. The 16-bit program counter addresses 2/4 Kbytes of program memory space at internal locations (Figure 8).

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations have six 16-bit vectors that correspond to the six available interrupts.

Byte 12 to byte 2047/4095 consists of on-chip, maskprogrammed ROM. Addresses 2048/4096 and greater are reserved.

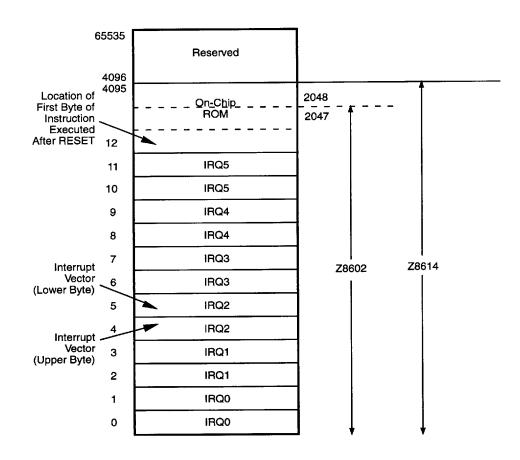


Figure 8. Program Memory Map

[®]ZiLŒ

Register File. The register file (Figure 9) consists of four I/O port registers, 124 general-purpose registers and 16 control and status registers (R3-R0, R127-R4, and R255-R240 respectively). The instructions can access registers directly or indirectly through an 8-bit address field. This allows short, 4-bit register addressing using the Register Pointer (Figure 10). In the 4-bit mode, the register file is

divided into nine working-register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Note: The general-purpose register are undefined after either Power-up or Reset.

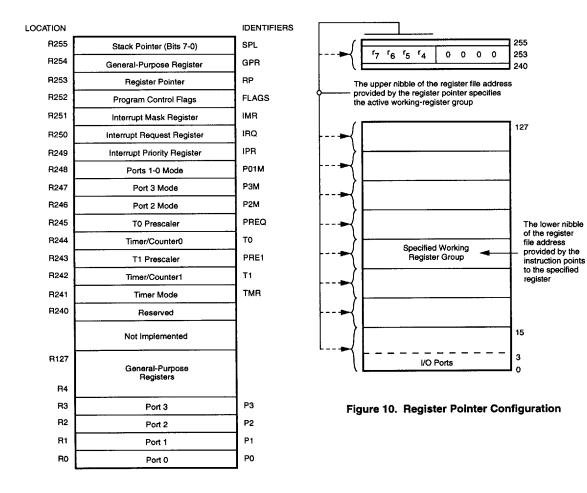


Figure 9. Register File Configuration

SPECIAL FUNCTIONS (Continued)

Stack. The Z8602/14 internal register files are used for the stack. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers.

Counter/Timers. There are two 8-bit programmable counter/timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler can be driven by internal or external clock sources, however, the T0 prescaler is driven by the internal clock only (Figure 11).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its own counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counter and prescaler reach the end of count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

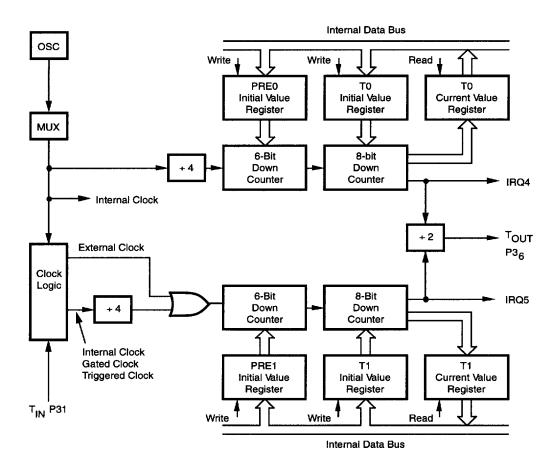


Figure 11. Counter/Timers Block Diagram

<u>ralics</u>

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and are either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T0 output to the input of T1. Port 3 line P36 also serves as a timer output (T_{OUT}) through which T0, T1 or the internal clock are output.

Interrupts. The Z8602/14 has six different interrupts from six different sources. These interrupts are maskable and prioritized (Figure 12). The six sources are divided as follows: four sources are claimed by Port 3 lines P33-P30 and two in counter/timers. The Interrupt Masked Register globally or individually enables or disables the six interrupts requests.

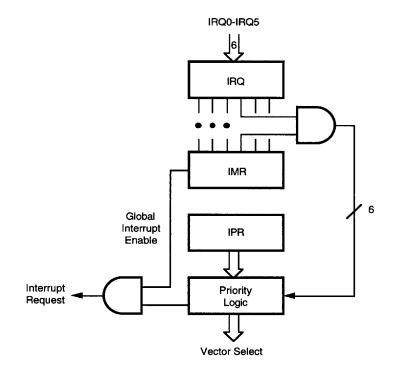
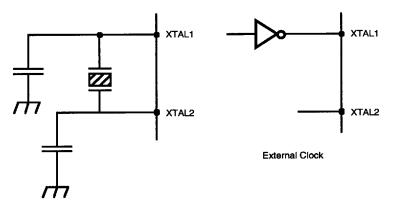


Figure 12. Interrupt Block Diagram

SPECIAL FUNCTIONS (Continued)

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated, an interrupt request is granted. Thus, this disables all of the subsequent interrupts, saves the Program Counter and status flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.


To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs service.

Clock. The Z8602/14 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, ceramic resonator, or any suitable external clock source

(XTAL1=Input, XTAL2=Output). The internal clock oscillates at the crystal frequency. The crystal should be AT cut, 4 MHz max, with a series resistance (RS) less than or equal to 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors from each pin to ground Pin 11 (Figure 13). Capacitance is between 100 pF to 150 pF depending upon the manufacturer of crystal, ceramic resonator, and PCB layout.

EMI. The Z8602/14 offers low EMI emission due to circuit modifications to improve EMI performance. The internal divide-by-two circuit has been removed to improve EMI performance.

Ceramic Resonator or Crystal

i

STANDARD TEST CONDITIONS

Standard Test Conditions. The characteristics listed here apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 14).

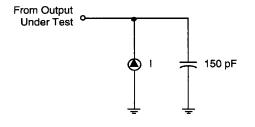


Figure 14. Test Load Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
Vcc	Supply Voltage*	-0.3	+7.0	٧
V _{CC} Τ _{STG}	Storage Temp	-65	+150	С
TA	Oper Ambient Temp	+	+	

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

* Voltage on all pins with respect to GND.

+ See ordering information

DC CHARACTERISTICS V_{cc} = 4.75V to 5.25V @ 0°C to +70°C

Sym	Parameter	Min	Max	Тур*	Unit	Condition
V _{CH}	Clock Input High Voltage	3.8	V _{cc}		V	Driven by External Clock Generator
V _{CL}	Clock Input Low Voltage	0.3	0.8		V	Driven by External Clock Generator
VIH	Input High Voltage	2.0	V_{cc}		V	
VIL	Input Low Voltage	-0.3	0.8		V	
V _{RH}	Reset Input High Voltage	3.8	V _{cc}		V	
V _{RL}	Reset Input Low Voltage	-0.3	0.8		V	
V _{OH}	Output High Voltage	2.0			V	l _{OH} = –250 μA (Port 2 only)
0.1	Output High Voltage	2.4			V	$I_{OH} = -250 \mu\text{A}$ (Port 3 only)
V _{OL}	Output Low Voltage		0.8		V	I _{OL} = +4.0 mA (See note (1) below.)
Ι _μ	Input Leakage	-10	10		μA	$V_{IN} = 0V, 5.25V$
IOL	Output Leakage	-10	10		μA	$V_{IN} = 0V, 5.25V$
I _{IB}	Reset Input Current		-50		μA	V _{IN} = 0V, 5.25V
Icc	V _{CC} Supply Current		150	135	mA	

Note:

* Typical @ 25°C

(1) A combined total of six I/O pins from Ports 2 and 3 may be used to sink 10 mA at 0.8 $\rm V_{OL}$ (max three pins per port). These may be used for LEDs or as general-purpose outputs requiring high sink current.

[⊗]ZiLOE

1

Z8® CONTROL REGISTERS DIAGRAMS

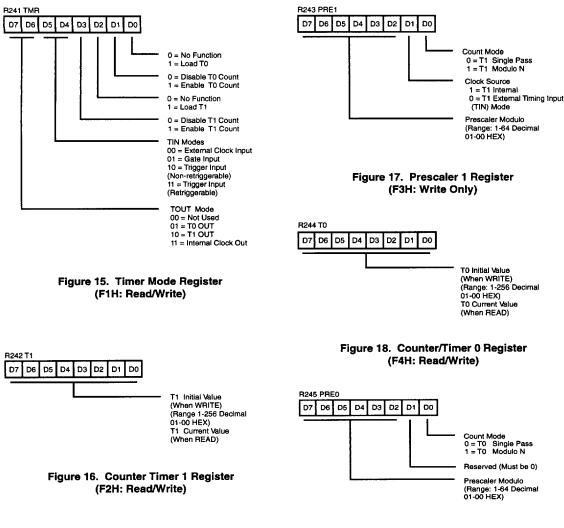


Figure 19. Prescaler 0 Register (F5H: Write Only)

[⊗]Zilos

Z8® CONTROL REGISTERS DIAGRAMS (Continued)

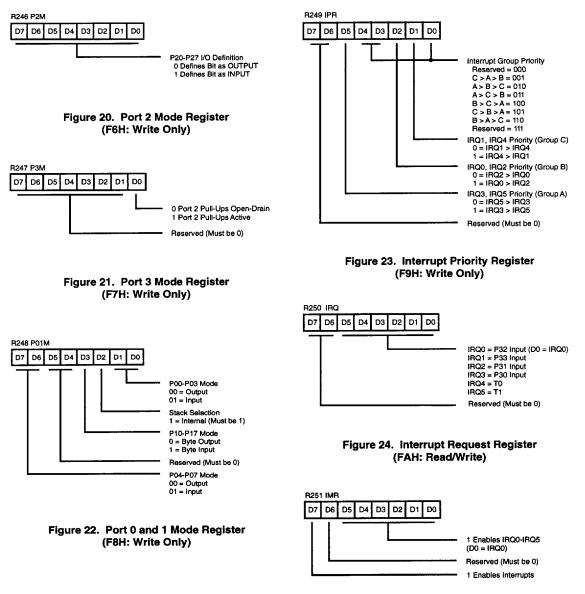


Figure 25. Interrupt Mask Register (FBH: Read/Write)

i

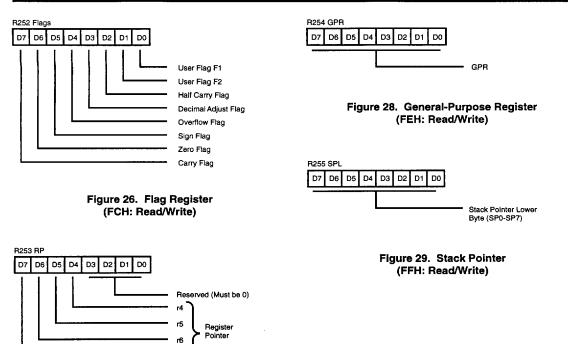


Figure 27. Register Pointer (FDH: Read/Write)

٢7

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

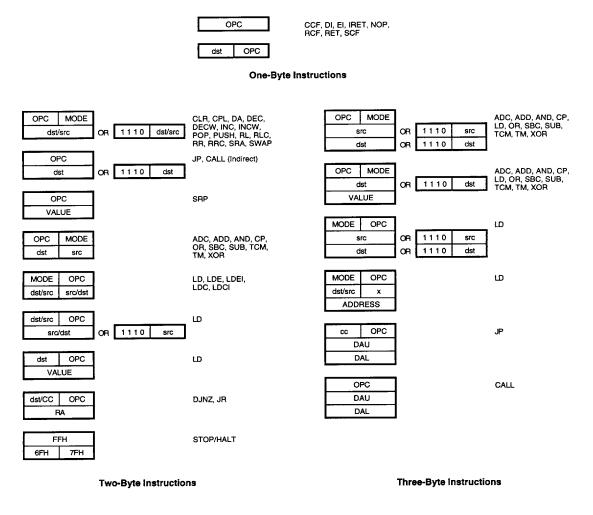
Flags. Control register (R252) contains the following six flags:

Meaning

Symbol

Symbol	Meaning
IRR	Indirect register pair or indirect working-
Irr	register pair address
X	Indirect working-register pair only Indexed address
^ DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect
	working-register address
lr	Indirect working-register address only
RR	Register pair or working register pair address

С Carry flag Ζ Zero flag s Sign flag V Overflow flag D Decimal-adjust flag н Half-carry flag Affected flags are indicated by: 0 Clear to zero Set to one 1 × Set to clear according to operation Unaffected -Undefined х


Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cc	Condition code
œ	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

1

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	С	Carry	C = 1
1111	NC	No Carry	C = 0
0110	Z	Zero	Z = 1
1110	NZ	Not Zero	Z = 0
1101	PL	Plus	S = 0
0101	MI	Minus	S = 1
0100	OV	Overflow	V = 1
1100	NOV	No Overflow	V = 0
0110	EQ	Equal	Z = 1
1110	NE	Not Equal	Z = 0
1001	GE	Greater Than or Equal	(S XOR V) = 0
0001	LT	Less than	(S XOR V) = 1
1010	GT	Greater Than	[Z OR (S XOR V)] = 0
0010	LE	Less Than or Equal	[Z OR (S XOR V)] = 1
1111	UGE	Unsigned Greater Than or Equal	C = 0
0111	ULT	Unsigned Less Than	C = 1
1011	UGT	Unsigned Greater Than	(C = 0 AND Z = 0) = 1
0011	ULE	Unsigned Less Than or Equal	(C OR Z) = 1
0000	F	Never True (Always False)	<u>,</u> ,

INSTRUCTION FORMATS

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol "—". For example:

dst - dst + src

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n)" is used to refer to bit (n) of a given operand location.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	At	ags fec Z	ted	v	D	Н	Instruction and Operation	M	ldress ode t src	Opcode Byte (Hex)	Af	ags fect Z	ed	۷	D	н
ADC dst, src dst ← dst + src + C	†	1[]	*	*	*	*	0	*	INC dst dst ← dst + 1	r R		rE r = 0 - F 20	-	*	*	*	-	-
ADD dst, src dst ← dst + src	†	0[]	*	*	*	*	0	*	· · · · · · · · · · · · · · · · · · ·	IR		21						
AND dst, src dst ← dst AND src	t	5[]	-	*	*	0	-	-	INCW dst dst ← dst + 1	RR IR		A0 A1	-	*	*	*	-	-
CALL dst SP \leftarrow SP - 2 @SP \leftarrow PC, PC \leftarrow dst	DA IRR	D6 D4	-	-	-	-	-	-	IRET FLAGS $\leftarrow @SP;$ SP $\leftarrow SP + 1$ PC $\leftarrow @SP;$ SP $\leftarrow SP + 2;$			BF	*	*	*	*	*	*
CCF C ← NOT C		EF	*	-	-	-	-	-	IMR(7) ← 1 JP cc, dst	DA		CD		-	_	_	-	-
CLR dst dst ← 0	R IR	B0 B1	-	-	-	-	-	-	if cc is true, PC \leftarrow dst	IRF	{	C = 0 - F 30						
COM dst dst ← NOT dst	R IR	60 61	-	*	*	0	-	-	JR cc, dst if cc is true, PC ← PC + dst	RA		CB C = 0 – F	-	-	-	-	-	-
CP dst, src dst – src	†	A[]	*	*	*	*	-	-	Range: +127, -128									
DA dst dst ← DA dst	R IR	40 41	*	*	*	X	-	-	LD dst, src dst ← src	r r	lm R	rC r8	-	-	-	-	-	-
DEC dst dst ← dst – 1	R IR	00 01	-	*	*	*	-	-		R r	r X	r9 r = 0 - F C7						
DECW dst dst ← dst – 1	RR IR	80 81	-	*	*	*	-	-		X r Ir	r Ir r	D7 E3 F3						
DI IMR(7) ← 0		8F	-	-	-	-	-	-		R R	R IR	E4 E5						
DJNZ r, dst r ← r − 1 if r ≠ 0	RA	rA r = 0 - F	-	-	-	-	-	-		r Ir Ir	IM IM R	E6 E7 F5						
PC ← PC + dst Range: +127,									LDC dst, src dst ← src	r	Irr	C2	-	-	-	-	-	-
–128 EI IMR(7) ← 1		9F	-	-	-	-	-	-	LDCI dst, src dst \leftarrow src r \leftarrow r + 1;rr \leftarrow rr + 1	Ir	Irr	C3	-	-	-	-	-	-
								_	NOP			FF	-	-	-	-	_	-

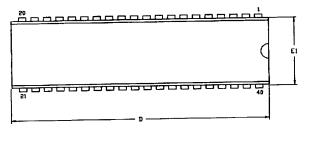
INSTRUCTION SUMMARY (Continued)

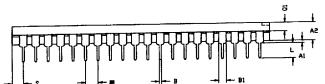
Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)		ags iect Z	ed S	v	D	H
OR dst, src dst ← dst OR src	†	4[]	-	*	*	0	-	-
POP dst dst \leftarrow @SP; SP \leftarrow SP + 1	R IR	50 51	-	-	-	-	-	-
PUSH src SP ← SP − 1; @SP ← src	R IR	70 71	-	-	-	-	-	-
RCF C ← 0		CF	0	-	-	-	-	-
RET PC \leftarrow @SP; SP \leftarrow SP + 2		AF	-	-	-	-	-	-
RL dst	R IR	90 91	*	*	*	*	-	-
RLC dst	R IR	10 11	*	*	*	*	-	-
RR dst	R IR	E0 E1	*	*	*	*	-	-
RRC dst	R IR	C0 C1	*	*	*	*	-	-
SBC dst, src dst \leftarrow dst \leftarrow src – C	†	3[]	*	*	*	*	1	*
SCF C←1		DF	1	-	-	-	-	-
	R IR	D0 D1	*	*	*	0	-	-
SRP dst RP ← src	lm	31	-	-	-	-	-	-
SUB dst, src dst ← dst – src	† .	2[]	*	*	*	*	1	*

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Af	ags fect Z	ed	v	D	н
SWAP dst	R	F0 F1	Х	[[Х	-	-
TCM dst, src (NOT dst) AND src	†	6[]	-	*	*	0	-	-
TM dst, src dst AND src	†	7[]	-	*	*	0	-	-
XOR dst, src dst ← dst XOR src	†	B[]	-	*	*	0	-	-

† These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

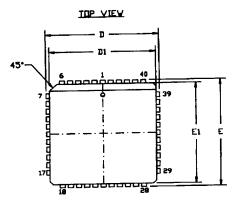

Addres dst	ss Mode src	Lower Opcode Nibble
r	r	[2]
r	lr	[3]
R	R	[4]
R	IR	[5]
R	IM	[6]
IR	IM	[7]

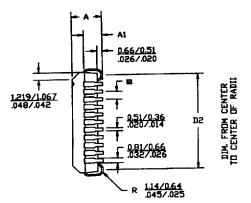

[⊗]ZiL05

OPCODE MAP

		Lower Nibble (Hex)															
		0	1	2	3	4	5	6	7	8	9	A	в	с	D	Е	F
	o	6.5 DEC	6.5 DEC	6.5 ADD	6.5 ADD	10.5 ADD	10.5 ADD	10.5 ADD	10.5 ADD	6.5 LD	6.5 LD	12/10.5 DJNZ	12/10.0 JR	6.5 LD	12.10.0 JP	6.5 INC	
		81 6.5	IR1 6.5	r1, r2 6.5	r1, lr2	R2, R1 10.5	IR2, R1 10.5	R1, IM	IR1, IM		r2, R1	r1, RA	cc, RA	r1, IM	cc, DA	rt	
	1	RLC	RLC	ADC	ADC	ADC	ADC	ADC	10.5 ADC								
		R1 6.5	1R1 6.5	r1, r2 6.5	r1, ir2 6.5	R2, R1 10.5	IR2, R1 10.5	R1, IM 10.5	IR1, IM 10.5								
	2	INC R1	INC IR1	SUB r1, r2	SUB	SUB R2, R1	SUB IR2, R1	SUB	SUB								
	3	8.0	6.1	6.5	6.5	10.5	10.5	R1, IM 10.5	1R1, IM 10.5								$\left - \right $
	3	JP IRR1	IM	SBC r1, r2	r1, Ir2	SBC R2, R1	SBC 1R2, R1	SBC R1, IM	SBC IR1, IM								
	4	8.5 DA	8.5 DA	6.5 OR	6.5 OR	10.5 OR	10.5 OR	10.5 OR	10.5 OR								
		R1	IR1	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM								
	5	10.5 POP	10.5 POP	6.5 AND	6.5 AND	10.5 AND	10.5 AND	10.5 AND	10.5 AND								
		R1 6.5	IR1 6.5	r1, r2 6.5	r1, lr2 6.5	R2, R1	IR2, R1 10.5	R1, IM 10.5	IR1, IM 10.5								
÷	6	сом	СОМ	тсм	тсм	тсм	тсм	тсм	тсм								
(He	_	R1 10/12.1	IR1 12/14.1	r1, r2 6.5	r1, lr2 6.5	R2, R1 10.5	IR2, R1 10.5	R1, IM 10.5	IR1, IM 10.5								
bble	7	PUSH R2	PUSH IR2	TM r1, r2	TM r1, ir2	TM R2, R1	TM IR2, R1	TM 81, IM	TM IR1, IM								
Upper Nibble (Hex)	8	10.5 DECW	10.5 DECW														6.1
đđ		RR1	IR1														DI
-	9	6.5 RL	6.5 RL														6.1 EI
		R1 10.5	IR1 10.5	6.5	6.5	10.5	10.5	10.5	10.5								
	A	INCW	INCW	CP	СР	CP	СР	СР	СР								14.0 RET
	_	RR1 6.5	IR1 6.5	r1, r2 6.5	r1, lr2 6.5	R2, R1 10.5	IR2, R1 10.5	R1, IM 10.5	IR1, IM 10.5							Ì	16.0
	в	CLR R1	CLR IR1	XOR r1, r2	XOR r1, lr2	XOR R2, R1	XOR IR2, R1	XOR R1, IM	XOR IR1, IM								IRET
	c	6.5 RRC	6.5 RRC	12.0 LDC	12.0 LDCI				10.5 LD								6.5 RCF
		R1	IR1	r 1, Irr2	ir1, irr2				r1,x,R2								nor
	D	6.5 SRA	6.5 SRA	12.0 LDC	12.0 LDCI	20.0 CALL*		20.0 CALL	10.5 LD			ļļ					6.5 SCF
		R1 6.5	IR1 6.5	r1, lrr2	Ir1, Irr2 6.5	IRR1 10.5	10.5	DA 10.5	r2,x,R1 10.5								6.5
	E	RR R1	RR IR1		LD r1, IR2	LD R2, R1	LD 1R2, R1	LD	LD IB1, IM								CCF
	F	8.5 SWAP	8.5 SWAP		6.5	112, 111	10.5	111, 1141									6.0
	•	R1	IR1		LD lr1, r2		LD R2, IR1				V	•		•	V	۲.	NOP
						3					<u> </u>			\sim			
2 3 2 3 1 Bytes per Instruction																	
Lower Legend:																	
					code bble				R = 8-bit Address								
	Upper Opcode A C			Pipeline Cycles				r = 4-bit Address R1 or r1 = Dst Address R2 or r2 = Src Address									
				0.5 ~	— Mn	ernonic			Sequence:								
				I, R2				Opcode, First Operand,									
				Eires/	/					Second Operand							
	First Operand			Second Operand			Note: Blank areas not defined.										
							*2-byte instruction appears as a 3-byte instruction										
												y					

PACKAGE INFORMATION





SYMBOL	MILLI	TETER	INCH			
5 milesc	MIN	MAX	MIN	MAX		
A1	0.51	0.81	020	.032		
SA	3.25	3.43	.128	.135		
B	0.38	0.53	.015	.021		
Bi	1.02	1.52	.040	.060		
С	0:63	0.38	.009	.015		
D	52.07	52.58	2.050	2.070		
E	15.24	15.75	.600	.620		
EL	13.59	14.22	.535	.560		
	2.54	TYP	.100 TYP			
€A	15.49	16.51	.610	.650		
L	3.18	3.81	.125	.150		
- Q1	1.52	1.91	.060	.075		
2	1.52	2.29	.060	.090		

CONTROLLING DIMENSIONS + INCH

40-Lead DIP Package Diagram

NDTES: 1. CONTROLLING DIMENSIONS : INCH 2. LEADS ARE COPLANAR WITHIN .004 IN. 3. DIMENSION : <u>MM.</u> INCH

SYMBOL.	MILLI	METER	INCH			
STABUL	MIN	MAX	MIN	MAX		
A	4.27	4.57	.168	.180		
A1	2.67	2.92	.105	.115		
D/E	17.40	17.65	.685	.695		
D1/E1	16.51	16.66	.650	.656		
D2	15.24	16.00	.600	.630		
	1.27	TYP	.050 TYP			

44-Pin PLCC Package Diagram

ORDERING INFORMATION

4 MHz	4 MHz
Z860204PSC	Z860204VSC
Z861404PSC	Z861404VSC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package

P = Plastic DIP V = Plastic Leaded Chip Carrier

Speed

04 = 4 MHz

Environmental C = Plastic Standard

Temperature

 $S = 0^{\circ}C$ to + 70°C

Example: Z 8602 04 P S C is a Z8602, 4 MHz, DIP, 0°C to -55°C, Plastic Standard Flow Environmental Flow Temperature Package Speed Product Number Zilog Prefix

1