查询Z8002/BQA供应商

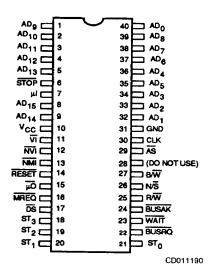
捷多邦,专业PCB打样工厂,24小时加急出货

IMAGE UNAVAILABLE

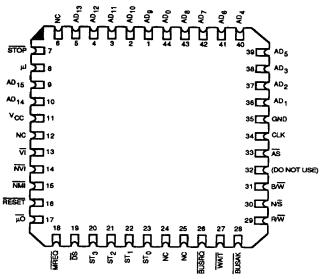
会の程序。WWW.dzsc.com

の発展に関する。MWW.dzsc.com

の数据に関する。MWW.dzsc.com


の数据に関する。MWW.dzsc.com

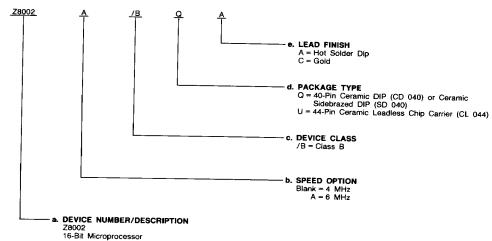
の数据に関する。MWW.dzsc.com


の数据に関する。MWW.dzsc.com

CONNECTION DIAGRAMS Top View

DIPs

LCC


CD011180

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) is formed by b. Speed Option (if applicable)

- c. Device Class
- d. Package Type
- e. Lead Finish

Valid Combinations						
Z8002		/504 /500 /511				
Z8002A		/BQA, /BQC, /BUA				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to	+ 150°C
Voltage at any Pin	
Relative to VSS0.3 to	o +7.0V
Power Dissipation	2 5W/

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

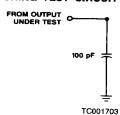
OPERATING RANGES

Military (M) Devices	
Temperature (T _C)55 to +125°C	2
Supply Voltage (V _{CC})5 V ± 5%	6

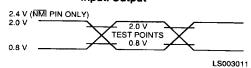
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
V _{CH} †	Clock Input HIGH Voltage	Driven by External Clock Generator	V _{CC} -0.4	V _{CC} +0.3*	V
V _{CL} †	Clock Input LOW Voltage	Driven by External Clock Generator	-0.3*	0.45	٧
VIH †	Input HIGH Voltage			V _{CC} + 0.3*	٧
V _{IH} NMI, † Reset	Input HIGH Voltage	IA!	-(4)	V _{CC} + 0.3*	٧
V _{IL} †	Input LOW Voltage	20 114	-0.3*	0.8	٧
VoH	Output HIGH Voltage	I _O -2	2.4		V
V _{OL}	Output LOW Voltage	I _O And And		0.4	V
l _{IL}	Input teal the Except SLST Pin	$0.4 \leqslant V_{ N} \leqslant +2.4V$		±10	μΑ
II _L on SEGT	Input Lakage on SEGT Pin		-100	100	μΑ
loL	Output Leakage	0.4 ≤ V _{OUT} ≤ + 2.4V		±10	μΑ
ICC	V _{CC} Supply Current (Note 1)			400	mA

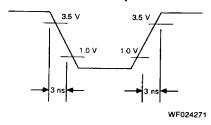

Notes: 1. ICC is measured while running a functional pattern with the loads turned on.

^{*} Not tested; guaranteed by design. † Group A, Subgroups 7 and 8 only are tested.


Standard Test Conditions

The characteristics below apply for the following test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin. Standard conditions are as follows:

SWITCHING TEST CIRCUIT



SWITCHING TEST WAVEFORMS Input/Output

AC testing outputs are driven at 2.0 V for a logical 1 and 0.5 V for a logical 0. The clock is driven at V_{CC} -0.4 V and 0.45 V. Timing measurements are made at 2.0 V for a logical 1 and 0.5 V for a logical 0.

AC Clock Input

AC Input (Except Clock)

SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter No. Symbol		4-MHz	4-MHz Devices		6-MHz Devices		
		Min.	Max.	Min.	Max.	Unit	
1	TcC	Clock Cycle Time	250	500	160	500	ns
_ 2	TwCh	Clock Width (HIGH)	105	250	70	250	ns
3	TwCl	Clock Width (LOW)	105	250	70	250	ns
4	TfC	Clock Fall Time (Note 1)		20		10	ns
5	TrC	Clock Rise Time (Note 1)		20		15	ns
8	TdC(Bz)	Clock 1 to Bus Float (Note 2)		65		55	ns
9	TdC(A)	Clock ↑ to Address Valid		100		75	ns
10	TdC(Az)	Clock † to Address Float (Note 2)		65		55	ns
11	TdA(DR)	Address Valid to Read Data Required Valid (Note 2)		475		305	ns
12	TsDI(C)	Data In to Clock ↓ Setup Time	50		20		ns
13	TdDS(A)	DS to Address Active (Note 2)	80		45		ns
14	TdC(DW)	Clock † to Write Data Valid				75	ns
15	ThDI(DS)	Data In to DS † Hold Time	W		0		ns
16	TdDO(DS)	Data Out Valid to DS 1 Delay (Note 2)	4-2		195		ns
17	TdA(MR)	Address Valid to MREQ Delay (Note 2)	55		35		ns
18	TdC(MR)	Clock ; to MREQ ; Delay		80		60	ns
19	TwMRh	MREQ Width (HIGH) (Note 2)	210		135		ns
20	TdMR(A)	MREQ to Address Not Active (No. 2)	70		35		ns
21	TdDO(DSW)	Data Out Valid to DS Write (Note 2)	55		35		ns
22	TdMR(DR)	MREQ 1 to Read Data A quire Valid (Note 2)		370		230	ns
23	TdC(MR)	Clock to MREQ Lay		80		60	ns
24	TdC(ASf)	Clock † to A Nelson	<u> </u>	80	7.1	60	ns
25	TdA(AS)	Address Vita to AS 1 Delay (Note 2)	55		35		ns
26	TdC(ASr)	Clock . 6 5 Delay		90		80	ns
27	TdAS(DR)	AS 1 to Read Data Required Valid (Note 2)		360		220	ns
28	TdDS(AS)	DS 1 to AS 1 Delay (Note 2)	70		35		ns
29	TwAS	AS Width (LOW) (Note 2)	85		55		ns
30	TdAS(A)	AS ↑ to Address Not Active Delay (Note 2)	70		45		ns
31	TdAz(DSR)	Address Float to DS (Read) ↓ Delay (Note 2)	0		0		ns
32	TdAS(DSR)	AS ↑ to DS (Read) ↓ Delay (Note 2)	80		55		ns
33	TdDSR(DR)	DS (Read) 1 to Read Data Required Valid (Note 2)		205		130	ns
34	TdC(DSr)	Clock 1 to DS 1 Delay		70		65	ns
35	TdDS(DW)	DS 1 to Write Data and STATUS Not Valid (Note 2)	75		45		ns
36	TdA(DSR)	Address Valid to DS (Read) ↓ Delay (Note 2)	180		110		ns
37	TdC(DSR)	Clock ↑ to DS (Read) ↓ Delay		120		85	ns
38	TwDSR	DS (Read) Width (LOW) (Note 2)	275		185		ns

Notes: See next page for notes.

SWITCHING CHARACTERISTICS (Cont'd.)

Parameter	Parameter Description	4-MHz	4-MHz Devices		6-MHz Devices		
No. Symbol		Min.	Max.	Min.	Max.	Unit	
39	TdC(DSW)	Clock ↓ to DS (Write) ↓ Delay		95		80	ns
40	TwDSW	DS (Write) Width (LOW) (Note 2)	185		110		ns
41	TdDSI(DR)	DS (Input) ↓ to Read Data Required Valid (Note 2)		330		210	ns
42	TdC(DSF)	Clock ↓ to DS (I/O) ↓ Delay		120		100	ns
43	TwDS	DS (I/O) Width (LOW) (Note 2)	410		255		ns
44	TdAS(DSA)	AS t to DS (Acknowledge) Delay (Note 2)	1065		690		ns
45	TdC(DSA)	Clock ↑ to DS (Acknowledge) ↓ Delay		20		85	ns
46	TdDSA(DR)	DS (Acknowledge) I to Read Data Required Delay (Note 2)	No.	4.		295	ns
47	TdC(S)	Clock † to Status Valid Delay		110		85	ns
48	TdS(AS)	Status Valid to AS † Delay (Note 2)	1		30		ns
49	TsR(C)	RESET to Clock † Setup Time	180		70		ns
50	ThR(C)	RESET to Clock † Hold Time	0		0		ns
51	TwNMI	NMI Width (LOW)	100		70		ns
52	TsNMI(C)	NMI to Clock † Setup Tim	140		70	-	ns
53	TsVI(C)	VI, NVI to Clock † South Ti	110		50		ns
54	ThVI(C)	VI, NVI to Clock Holo Time	20		20		ns
57	TsMI(C)	MI to Clock Setup Time	180		110		ns
58	ThMI(C)	MI to Clack to time	0		0		ns
59	TdC(MO)	Clog 1 C Delay		120		85	ns
60	TsSTP(C)	STOP o lock Setup Time	140		80		ns
61	ThSTP(C)	STOP to Clock # Hold Time	0		0		ns
62	TsWT(C)	WAIT to Clock 1 Setup Time	50		30		ns
63	ThWT(C)	WAIT to Clock ↓ Hold Time	10		10		ns
64	TsBRQ(C)	BUSRQ to Clock † Setup Time	90		80		ns
65	ThBRQ(C)	BUSRQ to Clock † Hold Time	10		10		ns
66	TdC(BAKr)	Clock 1 to BUSAK 1 Delay		100		75	ns
67	TdC(BAKf)	Clock 1 to BUSAK 1 Delay		100		75	ns
68	TwA	Address Valid Width (Note 2)	150		95		ns
69	TdDS(S)	DS to STATUS Not Valid (Note 2)	80		55		ns

Notes: 1. Clock rise and fall times are intended for design information only; not tested. 2. Not tested.