YAMAHALS I

YM6064

CD-I ADPCM Decode Processor (ADP)

OUTLINE

This ADP is an LSI chip used for processing CD-I audio signals (ADPCM decoding).

Reproduction of real time audio and of sound map audio can be done simultaneously by using this in conjunction with the YM6063 (CDC).

FEATURES

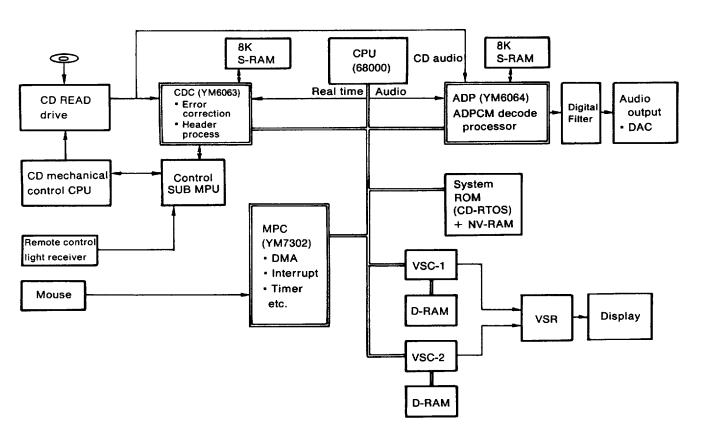
• CD-I format ADPCM data is converted to 16 bits linear PCM data.

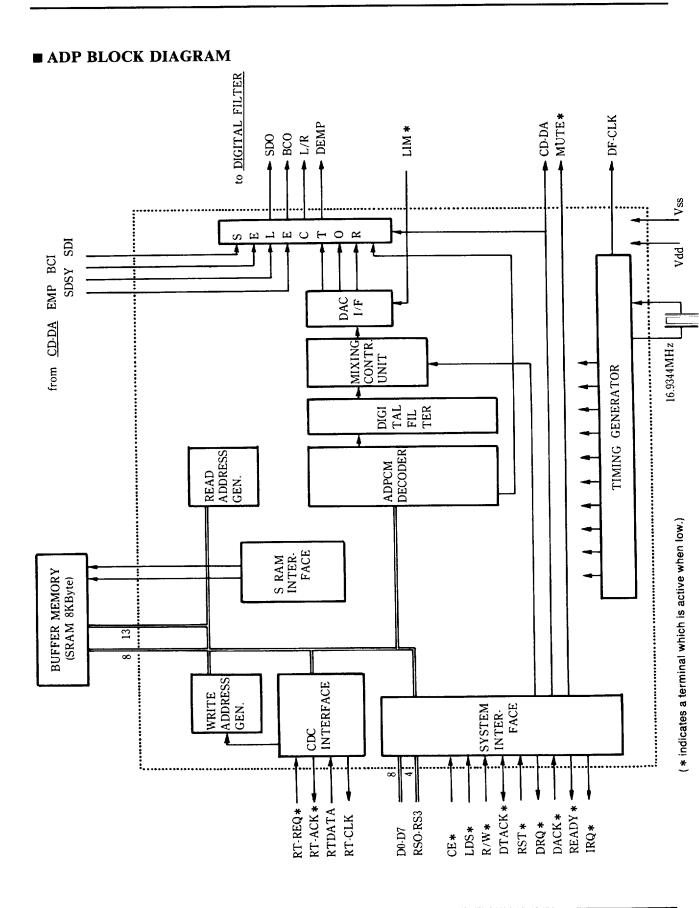
LEVEL A fs = 37.8 KHz 8 bits

LEVEL B fs = 37.8 KHz 4 bits

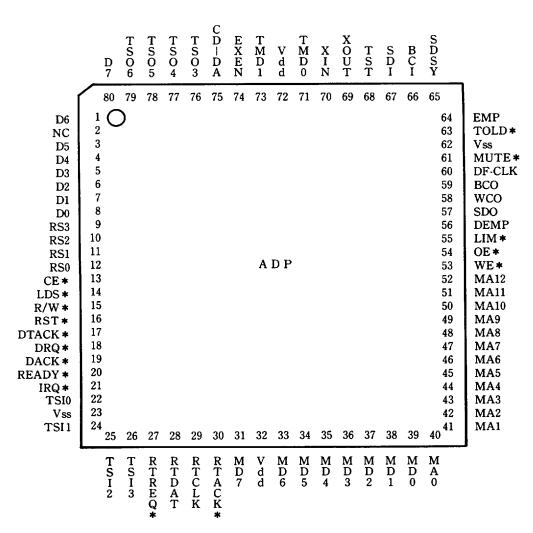
LEVEL C fs = 18.9 KHz 4 bits

- A circuit has been integrated specifically for digital mixing of real time audio and sound map audio.
- A double oversampling digital filter builtin to the CD-I format for LEVEL C
- A built-in 1dB x 127 step digital attenuation circuit
- A built-in overflow limiter
- A mute control terminal
- A CD audio digital signal input terminal
- A silicon gate CMOS, 80 PIN QFP, 5V power supply


0001890


YAMAHA CORPORATION

YM6064 CATALOG CATALOG No.: LSI-2160643


1992. 9

■ SAMPLE CD-I CONFIGURATION

■ TERMINAL ASSIGNMENTS

80 PIN QFP

■ TERMINAL FUNCTIONS

Pin number	Pin name	I/O	A/S	DT	Pin function		
1	D6	I/O	High	TS	Host data bus D6		
2	NC	-					
3	D5	I/O	High	TS	Host data bus D5		
4	D4	I/O	High	TS	Host data bus D4		
5	D3	I/O	High	TS	Host data bus D3		
6	D2	I/O	High	TS	Host data bus D2		
7	D1	I/O	High	TS	Host data bus D1		
8	D0	I/O	High	TS	Host data bus D0		
9	RS3	I	High		Internal register select A4		
10	RS2	I	High		Internal register select A3		
11	RS1	I	High		Internal register select A2		
12	RS0	I	High		Internal register select A1		
13	CE*	I	Low		Chip enable		
14	LDS*	I	Low		Lower data strobe		
15	R/W*	I	H/L		Read/write		
16	RST*	I	Low		Reset signal, reset at L		
17	DTACK*	I/O	Low	TS	Data transfer acknowledge		
18	DRQ*	0	Low	OD	DMA transfer request		
19	DACK*	I	Low		DMA transfer acknowledge		
20	READY*	0	Low	OD	DMA transfer ready		
21	IRQ*	0	Low	OD	Interrupt request		
22	TSI0	I	High		Test terminal, normally NC		
23	Vss	•			Ground 0V		
24	TSI1	I	High		Test terminal, normally NC		
25	TSI2	I	High		Test terminal, normally NC		
26	TSI3	I	High		Test terminal, normally NC		
27	RTREQ*	I	Low		Real time transfer request		
28	RTDATA	I	High		Real time transfer serial data		
29	RTCLK	0	High		Real time transfer serial data clock		
30	RTACK*	0	Low		Real time transfer acknowledge		
31	MD7	I/O	High	TS	SRAM data bus D7		
32	Vdd	-			+ 5V power supply		
33	MD6	I/O	High	TS	SRAM data bus D6		
34	MD5	I/O	High	TS	SRAM data bus D5		
35	MD4	I/O	High	TS	SRAM data bus D4		
36	MD3	I/O	High	TS	SRAM data bus D3		
37	MD2	I/O	High	TS	SRAM data bus D2		
38	MD1	I/O	High	TS	SRAM data bus D1		
39	MD0	I/O	High	TS	SRAM data bus D0		
40	MA0	0	High		SRAM address bus A0		

Pin number	Pin name	I/O	A/S	DT	Pin function		
41	MAl	0	High		SRAM address bus Al		
42	MA2	0	High		SRAM address bus A2		
43	MA3	0	High		SRAM address bus A3		
44	MA4	0	High		SRAM address bus A4		
45	MA5	0	High		SRAM address bus A5		
46	MA6	0	High		SRAM address bus A6		
47	MA7	0	High		SRAM address bus A7		
48	MA8	0	High		SRAM address bus A8		
49	MA9	О	High		SRAM address bus A9		
50	MA10	0	High		SRAM address bus A10		
51	MA11	0	High		SRAM address bus A11		
52	MA12	0	High		SRAM address bus A12		
53	WE*	0	Low	_	SRAM write enable		
54	OE*	0	Low		SRAM output enable		
55	LIM*	I	Low		Serial output, 16/18 bit		
56	DEMP	0	High		Emphasis output		
57	SDO	0	High		Serial data output		
58	WCO	0	High		Word clock output		
59	BCO	0	High		Bit clock output		
60	DF-CLK	0	High		Digital filter clock output		
61	MUTE*	0	Low		Mute control		
62	Vss				Ground		
63	TOLD*	0	Low		Test terminal, normally NC		
64	EMP	I	High		Emphasis input (for CD audio)		
65	SDSY	I	High		Word clock input (for CD audio)		
66	BCI	I	High		Bit clock input (for CD audio)		
67	SDI	I	High		Serial data input (for CD audio)		
68	TST	I	High		Test terminal, normally NC		
69	XOUT	0	High		System clock output (16.9344 MHz)		
70	XIN	I	High		System clock input (16.9344 MHz)		
71	TMD0	I	High		Test terminal, normally NC		
72	Vdd	-			+ 5V power supply		
73	TMD1	I	High		Test terminal, normally NC		
74	EXEN	0	High		Test terminal, normally NC		
75	CD-DA	0	High		CD-DA/CD-I select		
76	TSO3	0	High		Test terminal, normally NC		
77	TSO4	0	High		Test terminal, normally NC		
78	TSO5	0	High		Test terminal, normally NC		
79	TSO6	0	High		Test terminal, normally NC		
80	D7	I/O	High	TS	Host data bus D7		

■ SUMMARY OF FUNCTIONS

1. Main Functions and Peripheral Circuitry Interface

- The ADP, controlled by the 68000-type MPU, converts CD-I format audio data (ADPCM) to 16 bits PCM data, and carries out processing up to the DAC interface.
- Assembling this with the simultaneously developed YM6063 (CDC) enables the transfer of CD-I audio data directly to the ADP for real time audio reproduction.
- Also, assembling this with the YM7302 (MPC) will enable DMA transfer for sound map reproduction.
- Use of appropriate software enables digital attenuation, mute control, and switching between CD-I audio and CD audio reproduction.
- When the YM6063, YM6064 and YM7302 are assembled for use together, the data bus connections (tri-state data bus) can be made directly.

2. Main Functions of Internal Registers

INTERNAL REGISTER MAP

REGISTER NAME	R/W*	RS0	RS1	RS2	RS3
DR (DATA REGISTER)	W	0	0	0	0
MR (MODE REGISTER)	W	1	0	0	0
MSR (MASTER STATUS REGISTER)	R	1	0	0	0
CR0 (ADP0 CONTROL REGISTER)	W	0	1	0	0
SR0 (ADP0 STATUS REGISTER)	R	0	1	0	0
CR1 (ADP1 CONTROL REGISTER)	W	1	1	0	0
SR1 (ADP1 STATUS REGISTER)	R	1	1	0	0
ICR (INTERRUPT CONTROL REGISTER)	w	0	0	1	0
	R	0	0	1	0
DTR (DATA TRANSFER REGISTER)	w	1	0	1	0
	R	1	0	1	0
CI0 (ADP0 CODING INFORMATION REGISTER)	W	0	1	1	0
	R	0	1	1	0
CII (ADPI CODING INFORMATION REGISTER)	w	1	1	1	0
	R	1	1	1	0
AV0 (ATTENUATOR VALUE0 REGISTER)	W	0	0	0	1
AVI (ATTENUATOR VALUEI REGISTER)	W	1	0	0	1
AV2 (ATTENUATOR VALUE2 REGISTER)	W	0	1	0	1
AV3 (ATTENUATOR VALUE3 REGISTER)	w	1	1	0	1
AV4 (ATTENUATOR VALUE4 REGISTER)	W	0	0	1	1
AV5 (ATTENUATOR VALUES REGISTER)	W	1	0	1	1
AV6 (ATTENUATOR VALUE6 REGISTER)	W	0	1	1	1
AV7 (ATTENUATOR VALUE7 REGISTER)	W	1	1	1	1

: Data register for sound map software transfer DR : ADP0, ADP1 enable and mute, CD-I/CD audio switching MR : ADP0, ADP1 ready status check **MSR** : ADP0 reset, buffer clear, error flag clear, real time control, DMA CR0 completed flag : ADP0 status check SR0 Interrupt flag, DMA transfer flag, buffer empty flag, overflow flag : ADP1 reset, buffer clear, error flag clear, DMA completed flag CR1 : ADP1 status check SR1 Interrupt flag, DMA transfer flag, buffer empty flag, overflow flag : ADP0 interupt enable, ADP1 interrupt enable **ICR** : ADPO DMA transfer start trigger, software transfer start trigger, **DTR** ADP1 DMA transfer start trigger, software transfer start trigger

CIO : ADPO coding information CI1 : ADP1 coding information

AV0~AV7 : Register which provides the attenuation value for the digital at-

tenuator

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Item	Symbol	Minimum	Maximum	Unit
Supply voltage	V_{DD}	-0.3	+7.0	v
Input voltage	V_{IN}	-0.3	$V_{DD} + 0.3$	V
Ambient operating temperature	T_{OP}	0	+ 70	°C
Storage temperature	T_{ST}	- 50	+125	°C

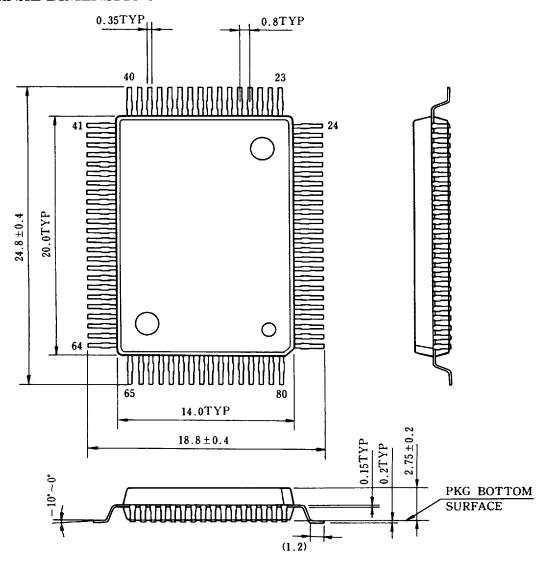
(Based on the reference voltage of Vss, AVss = 0.0V)

2. Recommended Operating Conditions

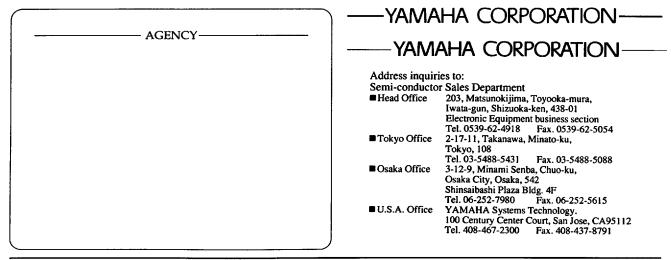
Supply voltage $+5V \pm 5\%$

(Based on the reference voltage of V_{ss} , $AV_{ss} = 0.0V$)

Ambient operating temperature $0 \sim 70$ °C


3. DC Characteristics $(V_{DD} = +5V \pm 5\%, T_{OP} = 0 \sim 70$ °C)

Item	Symbol	Condition	Minimum	Maximum	Unit
High level output voltage	Voh	$I_{OH} = -0.4 \text{mA}$	2.7		v
Low level output voltage	Vol	$I_{OL} = 0.8 mA$		0.4	v
High level input voltage (TTL level)	V _{IH}		2.2		v
Low level input voltage (TTL level)	V _{tL}			0.8	V
High level input voltage (CMOS level)	\mathbf{V}_{IH}		3.5		v
Low level input voltage (CMOS level)	V _{iL}			1.0	V
Input leak current	IL		-10	10	μΑ
OFF Input leak current	ILz		-10	10	μA
Pull-up resistance	RU		60	600	ΚΩ
Power current	I_{DD}			50	mA


4. Terminal Capacitances (f = 1MHz)

Item	Symbol	Condition	Minimum	Maximum	Unit
Input teminal	Cı			8	pF
Output terminal	Co	No load		10	рF
I/O terminal	C _{iO}	No load		12	pF
Output load capacitance	C _L			100	pF

■ EXTERNAL DIMENSIONS

The specifications of this product are subject to improvement changes without prior notice.

