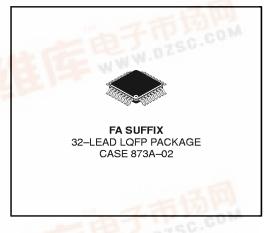

MOTOROXA^{00EP111FA供应商} SEMICONDUCTOR TECHNICAL DATA

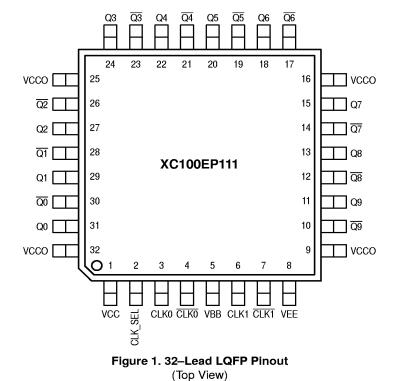
捷多邦,专业PCB打样工厂,24小时加急出货


Low-Voltage 1:10 Differential ECL/PECL/HSTL Clock Driver

The XC100EP111 is a low skew 1–to–10 differential driver, designed with clock distribution in mind. It accepts two clock sources into an input multiplexer. The ECL/PECL input signals can be either differential or single–ended if the V_{BB} output is used. HSTL inputs can be used when the EP111 is operating under PECL conditions. The selected signal is fanned out to 10 identical differential outputs.

- 100ps Part-to-Part Skew
- 35ps Output-to-Output Skew
- Differential Design
- VBB Output
- Low Voltage V_{EE} Range of -2.375 to -3.8V for ECL
- Low Voltage V_{CC} Range of +2.375 to +3.8V for PECL and HSTL
- 75kΩ Input Pulldown Resistors
- ECL/PECL Outputs

1:10 DIFFERENTIAL ECL/PECL/HSTL CLOCK DRIVER


The EP111 is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate-to-gate skew within a device, and empirical modeling is used to determine process control limits that ensure consistent t_{pd} distributions from lot to lot. The net result is a dependable, guaranteed low skew device.

To ensure that the tight skew specification is met it is necessary that both sides of the differential output are terminated into 50Ω , even if only one side is being used. In most applications, all ten differential pairs will be used and therefore terminated. In the case where fewer than ten pairs are used, it is necessary to terminate at least the output pairs on the same package side as the pair(s) being used on that side, in order to maintain minimum skew. Failure to do this will result in small degradations of propagation delay (on the order of 10–20ps) of the output(s) being used which, while not being catastrophic to most designs, will mean a loss of skew margin.

The XC100EP111, as with most other ECL devices, can be operated from a positive V_{CC} supply in PECL mode. This allows the EP111 to be used for high performance clock distribution in +3.3V or +2.5V systems. Designers can take advantage of the EP111's performance to distribute low skew clocks across the backplane or the board. In a PECL environment, series or Thevenin line terminations are typically used as they require no additional power supplies. For more information on using PECL, designers should refer to Motorola Application Note AN1406/D.

PIN NAMES

Pins	Function
CLK0, <u>CLK0</u> CLK1, <u>CLK1</u> Q0:9, <u>Q0:9</u> CLK_SEL	Differential ECL/PECL Input Pair Differential HSTL Input Pair Differential PECL Outputs Active Clock Select Input
VBB	V _{BB} Output

L

FUNCTION

CLK_SEL	Active Input
0	CLKO, <u>CLKO</u>
1	CLK1, CLK1

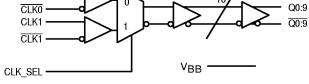


Figure 2. Logic Symbol

L

ECL DC CHARACTERISTICS

			_40°C			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Unit									
V _{OH}	Output HIGH Voltage	-1.03	-0.98	-0.93	-1.00	-0.95	-0.89	-0.99	-0.93	-0.88	-0.96	-0.89	-0.83	V
V _{OL}	Output LOW Voltage	-1.72	-1.60	-1.48	-1.81	-1.67	-1.53	-1.86	-1.70	-1.56	-1.97	-1.77	-1.60	V
VIH	Input HIGH Voltage	-1.165		-0.88	-1.165		-0.88	-1.165		-0.88	-1.165		-0.88	V
VIL	Input LOW Voltage	-1.81		-1.475	-1.81		-1.475	-1.81		-1.475	-1.81		-1.475	V
V _{BB}	Output Reference Voltage	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
V_{EE}	Power Supply Voltage	-2.375		-3.8	-2.375		-3.8	-2.375		-3.8	-2.375		-3.8	V
Чн	Input High Current			150			150			150			150	μA
IEE	Power Supply Current V _{EE} = -3.3 V V _{EE} = -2.5 V		60 60	70 65		70 65	80 70		70 70	80 75		80 75	90 80	mA
VCMR	Common Mode Range	V _{EE} + 1.7		V _{CC} – 0.3	V _{EE} + 1.7		V _{CC} – 0.3	V _{EE} + 1.7		V _{CC} – 0.3	V _{EE} + 1.7		V _{CC} – 0.3	V
V _{PP}	Minimum Input Swing	500			500			500			500			mV

HSTL DC CHARACTERISTICS

			–40°C			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{CMR}	Common Mode Range	V _{EE} + 0.9		V _{CC} – 1.1	V _{EE} + 0.9		V _{CC} – 1.1	V _{EE} + 0.9		V _{CC} – 1.1	V _{EE} + 0.9		V _{CC} – 1.1	V
V _{PP}	Minimum Input Swing	500			500			500			500			mV

PECL DC CHARACTERISTICS

			–40°C			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Unit									
V _{OH}	Output HIGH Voltage ⁽¹⁾	2.27	2.32	2.37	2.30	2.35	2.41	2.31	2.37	2.42	2.34	2.41	2.47	V
V _{OL}	Output LOW Voltage ⁽¹⁾	1.58	1.70	1.82	1.49	1.63	1.77	1.44	1.60	1.74	1.33	1.53	1.70	V
V _{IH}	Input HIGH Voltage ⁽¹⁾	2.135		2.42	2.135		2.42	2.135		2.42	2.135		2.42	V
VIL	Input LOW Voltage ⁽¹⁾	1.49		1.825	1.49		1.825	1.49		1.825	1.49		1.825	V
V _{BB}	Output Reference Voltage ⁽¹⁾	1.92		2.04	1.92		2.04	1.92		2.04	1.92		2.04	V
V_{EE}	Power Supply Voltage	2.375		3.8	2.375		3.8	2.375		3.8	2.375		3.8	V
IIH	Input High Current			150			150			150			150	μA
IEE	Power Supply Current V _{EE} = -3.3 V V _{EE} = -2.5 V		60 60	70 65		70 65	80 70		70 70	80 75		80 75	90 80	mA
V _{CMR}	Common Mode Range	V _{EE} + 1.7		V _{CC} – 0.3	V _{EE} + 1.7		V _{CC} – 0.3	V _{EE} + 1.7		V _{CC} – 0.3	V _{EE} + 1.7		V _{CC} – 0.3	V
V _{PP}	Minimum Input Swing	500			500			500			500			mV

1. These values are for V_{CC} = 3.3 V. Level Specifications will vary 1:1 with V_{CC} .

			–40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
^t PLH	ECL/PECL Prop Delay to Output	310	380	450	350	415	475	375	445	510	480	575	680	ps	Note 1
^t PHL	HSTL Prop Delay to Output	340	415	485	380	450	510	410	480	545	520	615	720	ps	Note 1
^t skew	With–in Device Skew		15	30		15	30		15	35		35	65	ps	Note 1
	Part–to–Part Skew			145			130			135			200	ps	Note 1
f _{max}	Maximum Input Frequency		500			500			500			500		MHz	
t _r /t _f	Output Rise/Fall Time	200		600	200		600	200		600	200		600	ps	

AC CHARACTERISTICS (V_{EE} = -3.0 V to -3.8 V; V_{CC} = V_{CCO} = GND; Frequency < 500 MHz)

AC CHARACTERISTICS (V_{EE} = -3.0 V to -3.8 V; V_{CC} = V_{CCO} = GND; Frequency > 500 MHz)

										-					
			_40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
tPLH tPHL	ECL/PECL Prop Delay to Output	180	390	595	200	430	650	240	460	675	395	585	775	ps	Note 1
t _{skew}	With–in Device Skew		10	35		10	35		15	35		25	65	ps	Note 1
	Part–to–Part Skew			415			450			435			380	ps	Note 1
f _{max}	Maximum Input Frequency		1500			1500			1500			1500		MHz	
t _r /t _f	Output Rise/Fall Time	200		600	200		600	200		600	200		600	ps	

1. The Q9 output pair is excluded from these measurements. For specifications including Q9 please refer to the errata section of the data sheet. MC100EP111 will improve Q9 performance to match that of other outputs.

L

			-40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
^t PLH	ECL/PECL Prop Delay to Output	315	375	435	335	410	480	370	435	500	465	545	630	ps	Note 1
^t PHL	HSTL Prop Delay to Output	355	420	480	375	450	520	410	480	540	515	595	680	ps	Note 1
^t skew	With–in Device Skew		15	30		15	30		15	30		25	50	ps	Note 1
	Part–to–Part Skew			125			145			130			165	ps	Note 1
fmax	Maximum Input Frequency		500			500			500			500		MHz	
t _r /t _f	Output Rise/Fall Time	200		600	200		600	200		600	200		600	ps	

AC CHARACTERISTICS (V_{EE} = -2.5 V \pm 5%; V_{CC} = V_{CCO} = GND; Frequency < 500 MHz)

AC CHARACTERISTICS (V_{EE} = -2.5 V \pm 5%; V_{CC} = V_{CCO} = GND; Frequency > 500 MHz)

			–40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
^t PLH ^t PHL	ECL/PECL Prop Delay to Output	170	390	600	210	430	635	225	450	665	365	560	750	ps	Note 1
^t skew	With–in Device Skew		10	35		10	35		10	35		20	45	ps	Note 1
	Part–to–Part Skew			430			425			440			385	ps	Note 1
f _{max}	Maximum Input Frequency		1500			1500			1500			1500		MHz	
t _r /t _f	Output Rise/Fall Time	200		600	200		600	200		600	200		600	ps	

1. The Q9 output pair is excluded from these measurements. For specifications including Q9 please refer to the errata section of the data sheet. MC100EP111 will improve Q9 performance to match that of other outputs.

ERRATA

Enhancements are being made to eliminate the high temperature problems associated with Q9.

			_40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
^t PLH	ECL/PECL Prop Delay to Output	305	380	455	350	415	490	375	445	525	480	580	765	ps	
^t PHL	HSTL Prop Delay to Output	340	415	490	380	450	525	410	480	565	520	620	770	ps	
^t skew	With–in Device Skew		20	40		20	40		30	50		100	180	ps	
	Part–to–Part Skew			150			145			155			285	ps	
^f max	Maximum Input Frequency		500			500			500			500		MHz	
t _r /t _f	Output Rise/Fall Time	200		600	200		600	200		600	200		600	ps	

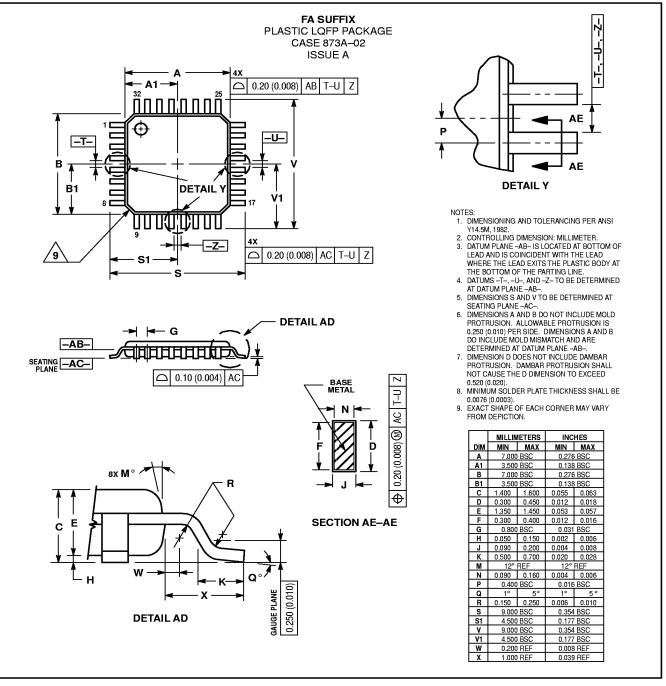
L

AC CHARACTERISTICS (V_{EE} = -3.0 V to -3.8 V; V_{CC} = V_{CCO} = GND; Frequency < 500 MHz)

AC CHARACTERISTICS (V_{EE} = -3.0 V to -3.8 V; V_{CC} = V_{CCO} = GND; Frequency > 500 MHz)

			-40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
tPLH tPHL	ECL/PECL Prop Delay to Output	180	395	600	200	430	660	240	465	680	395	590	795	ps	
^t skew	With–in Device Skew		15	40		20	40		25	55		65	220	ps	
	Part–to–Part Skew			420			460			440			400	ps	
f _{max}	Maximum Input Frequency		1500			1500			1500			1500		MHz	
t _r /t _f	Output Rise/Fall Time	200		600	200		600	200		600	200		600	ps	

			_40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
^t PLH	ECL/PECL Prop Delay to Output	315	375	440	335	410	495	370	435	515	465	550	675	ps	
^t PHL	HSTL Prop Delay to Output	355	420	485	380	451	525	410	480	560	515	600	730	ps	
^t skew	With–in Device Skew		20	35		20	40		25	45		60	100	ps	
	Part–to–Part Skew			125			160			145			215	ps	
^f max	Maximum Input Frequency		500			500			500			500		MHz	
t _r /t _f	Output Rise/Fall Time	200		600	200		600	200		600	200		600	ps	


AC CHARACTERISTICS (V_{EE} = -2.5 V \pm 5%; V_{CC} = V_{CCO} = GND; Frequency < 500 MHz)

AC CHARACTERISTICS (V_{EE} = -2.5 V $\pm 5\%$; V_{CC} = V_{CCO} = GND; Frequency > 500 MHz)

		-40°C			0°C			25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
^t PLH ^t PHL	ECL/PECL Prop Delay to Output	170	390	600	210	430	640	225	450	675	365	565	750	ps	
^t skew	With–in Device Skew		15	40		20	45		20	50		50	120	ps	
	Part–to–Part Skew			430			430			450			385	ps	
f _{max}	Maximum Input Frequency		1500			1500			1500			1500		MHz	
t _r /t _f	Output Rise/Fall Time	200		600	200		600	200		600	200		600	ps	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, or manufacture of the part. Motorola and **()** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

OUTLINE DIMENSIONS

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

Mfax is a trademark of Motorola, Inc.

ASIA / PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,

L