SWITCHMODE™ Power Rectifiers

This state-of-the-art device is designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Pb-Free Package is Available*

Mechanical Characteristics

- Case: Epoxy, Molded, Epoxy Meets UL 94 V-0
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Device Meets MSL1 Requirements
- ESD Ratings: Machine Model, C (> 400 V) Human Body Model, 3B (> 8000 V)

MAXIMUM RATINGS

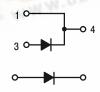
Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Current Total Device, (Rated V_R), $T_C = 150$ °C	I _{F(AV)}	8.0	A
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), T _C = 150°C	I _{FM}	16	A
Nonrepetitive Peak Surge Current (Surge Applied at Rated Load Conditions Half-wave, Single Phase, 60 Hz)	I _{FSM}	100	A
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

THERMAL CHARACTERISTICS

Maximum Thermal Resistance,	R _{θJC}	3.0	°C/W
Junction-to-Case			

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

or additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques


Reference Manual, SOLDERRM/D.

ON Semiconductor®


http://onsemi.com

ULTRAFAST RECTIFIERS 8.0 AMPERES 200 VOLTS

MARKING DIAGRAM

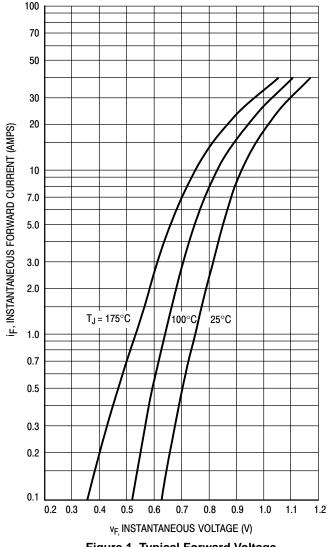
= Assembly Location

= Year WW = Work Week BYW80-200 = Device Code = Pb-Free Package G

= Diode Polarity

ORDERING INFORMATION

Device	Package	Shipping
BYW29-200	TO-220	50 Units/Rail
BYW29-200G	TO-220 (Pb-Free)	50 Units/Rail


dzsc.com

ELECTRICAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 1) ($i_F = 5.0 \text{ A}, T_C = 100^{\circ}\text{C}$) ($i_F = 20 \text{ A}, T_C = 25^{\circ}\text{C}$)	VF	0.85 1.3	V
Maximum Instantaneous Reverse Current (Note 1) (Rated Dc Voltage, $T_J = 100^{\circ}\text{C}$) (Rated Dc Voltage, $T_J = 25^{\circ}\text{C}$)	i _R	600 5.0	μΑ
Maximum Reverse Recovery Time $ \begin{aligned} &(I_F=1.0 \text{ A, di/dt}=50 \text{ A/}\mu\text{s}) \\ &(I_F=0.5 \text{ A, } I_R=1.0 \text{ A, } I_{REC}=0.25 \text{ A}) \end{aligned} $	t _{rr}	35 25	ns

1000

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

I_R, REVERSE CURRENT (μ A) 100 10 100°C 1.0 0.1 0.01 100 120 V_R, REVERSE VOLTAGE (V)

Figure 2. Typical Reverse Current*

^{*} The curves shown are typical for the highest voltage device in the grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R.

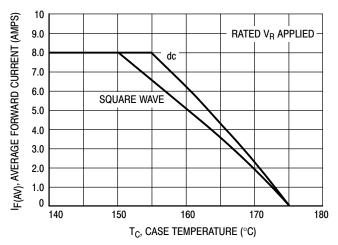
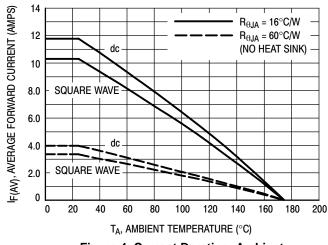



Figure 1. Typical Forward Voltage

Figure 3. Current Derating, Case

PF(AV), AVERAGE POWER DISSIPATION (WATTS $T_J=175^{\circ}C$ 9.0 8.0 7.0 SQUARE WAVE 6.0 dc 5.0 4.0 3.0 2.0 1.0 1.0 2.0 4.0 5.0 6.0 7.0 8.0 10 I_{F(AV)}, AVERAGE FORWARD CURRENT (AMPS)

Figure 4. Current Derating, Ambient

Figure 5. Power Dissipation

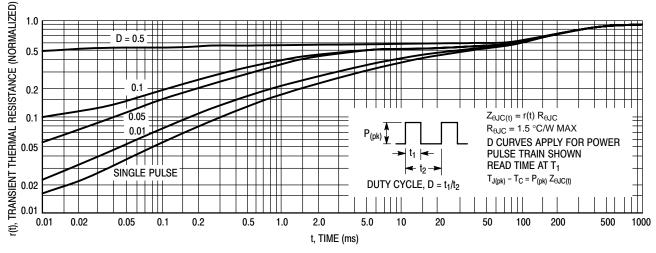


Figure 6. Thermal Response

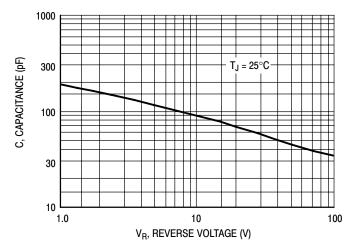
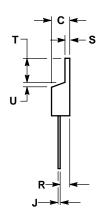



Figure 7. Typical Capacitance

PACKAGE DIMENSIONS

TO-220 CASE 221B-04 ISSUE D

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.595	0.620	15.11	15.75
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.82
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.190	0.210	4.83	5.33
Н	0.110	0.130	2.79	3.30
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
٦	0.045	0.060	1.14	1.52
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.14	1.39
Т	0.235	0.255	5.97	6.48
U	0.000	0.050	0.000	1.27

ON Semiconductor and up are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULLFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.